Rotating Flow


Book Description

Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources




Particle Image Velocimetry


Book Description

Particle image velocimetry, or PIV, refers to a class of methods used in experimental fluid mechanics to determine instantaneous fields of the vector velocity by measuring the displacements of numerous fine particles that accurately follow the motion of the fluid. Although the concept of measuring particle displacements is simple in essence, the factors that need to be addressed to design and implement PIV systems that achieve reliable, accurate, and fast measurements and to interpret the results are surprisingly numerous. The aim of this book is to analyze and explain them comprehensively.




Aerodynamics for Engineering Students


Book Description

Aerodynamics for Engineering Students, Fifth Edition, is the leading course text on aerodynamics. The book has been revised to include the latest developments in flow control and boundary layers, and their influence on modern wing design as well as introducing recent advances in the understanding of fundamental fluid dynamics. Computational methods have been expanded and updated to reflect the modern approaches to aerodynamic design and research in the aeronautical industry and elsewhere, and the structure of the text has been developed to reflect current course requirements. The book is designed to be accessible and practical. Theory is developed logically within each chapter with notation, symbols and units well defined throughout, and the text is fully illustrated with worked examples and exercises. The book recognizes the extensive use of computational techniques in contemporary aeronautical design. However, it can be used as a stand-alone text, reflecting the needs of many courses in the field for a thorough grounding in the underlying principles of the subject. The book is an ideal resource for undergraduate and postgraduate students in aeronautical engineering. The classic text, expanded and updated.Includes latest developments in flow control, boundary layers and fluid dynamics.Fully illustrated throughout with illustrations, worked examples and exercises.




An Introduction to Magnetohydrodynamics


Book Description

This book is an introductory text on magnetohydrodynamics (MHD) - the study of the interaction of magnetic fields and conducting fluids.




A Guide to Fluid Mechanics


Book Description

This book is written for the learner's point of view, with the purpose of helping readers understand the principles of flow. The theory is explained using ordinary and accessible language, where fluid mechanics is presented in analogy to solid mechanics to emphasize that they are all the application of Newtonian mechanics and thermodynamics. All the informative and helpful illustrations are drawn by the author, uniting the science and the art with figures that complement the text and provide clear understanding. Another unique feature is that one of the chapters is wholly dedicated to providing 25 selected interesting and controversial flow examples, with the purpose of linking theory with practice. The book will be useful to both beginners in the field and experts in other fields, and is ideal for college students, graduate students, engineers, and technicians.




High Angle of Attack Aerodynamics


Book Description

The aerodynamics of aircraft at high angles of attack is a subject which is being pursued diligently, because the modern agile fighter aircraft and many of the current generation of missiles must perform well at very high incidence, near and beyond stall. However, a comprehensive presentation of the methods and results applicable to the studies of the complex aerodynamics at high angle of attack has not been covered in monographs or textbooks. This book is not the usual textbook in that it goes beyond just presenting the basic theoretical and experimental know-how, since it contains reference material to practical calculation methods and technical and experimental results which can be useful to the practicing aerospace engineers and scientists. It can certainly be used as a text and reference book for graduate courses on subjects related to high angles of attack aerodynamics and for topics related to three-dimensional separation in viscous flow courses. In addition, the book is addressed to the aerodynamicist interested in a comprehensive reference to methods of analysis and computations of high angle of attack flow phenomena and is written for the aerospace scientist and engineer who is familiar with the basic concepts of viscous and inviscid flows and with computational methods used in fluid dynamics.




Vortex Methods


Book Description

Vortex methods have matured in recent years, offering an interesting alternative to finite difference and spectral methods for high resolution numerical solutions of the Navier Stokes equations. In the past three decades, research into the numerical analysis aspects of vortex methods has provided a solid mathematical background for understanding the accuracy and stability of the method. At the same time vortex methods retain their appealing physical character, which was the motivation for their introduction. This book presents and analyzes vortex methods as a tool for the direct numerical simulation of impressible viscous flows. It will interest graduate students and researchers in numerical analysis and fluid mechanics and also serve as an ideal textbook for courses in fluid dynamics.




NASA Technical Note


Book Description