Vortex Dynamics and Optical Vortices


Book Description

The contents of the book cover a wide variety of topics related to the analysis of the dynamics of vortices and describe the results of experiments, computational modeling and their interpretation. The book contains 13 chapters reaching areas of physics in vortex dynamics and optical vortices including vortices in superfluid atomic gases, vortex laser beams, vortex-antivortex in ferromagnetic hybrids, and optical vortices illumination in chiral nanostructures. Also, discussions are presented on particle motion in vortex flows, on the simulation of vortex-dominated flows, on vortices in saturable media, on achromatic vortices, and on ultraviolet vortices. Fractal light vortices, coherent vortex beams, together with vortices in electric dipole radiation, and spin wave dynamics in magnetic vortices are examined as well.







Vortex Laser Beams


Book Description

This book deals with theoretical bases of the modern optics division concerned with coherent light fields with singularities characterized by phase uncertainty. Singular light fields include laser vortex beams or beams that carry orbital angular momentum. Laser vortex beams that have been introduced in optics in recent years are discussed in detail. Among them, of special notice are families of asymmetric laser vortex beams that, while being devoid of radial symmetry, remain unchanged upon propagation. What makes the laser vortex beams especially interesting is the ability to preserve their structure while propagating in a scattering medium or through a turbulent atmosphere. The orbital angular momentum is an extra degree of freedom of laser vortices because beams with different topological charge can be utilized as independent channels for data transmission in wireless communications. Laser vortex beams are generated from conventional Gaussian beams using liquid crystal light modulators, which are now readily available at any optical laboratory. Provide a framework for the comparative analysis of the efficiency of different vortex beams for micromanipulation. Includes detailed illustrations, enabling the vortex structure to be easily understood even by non-experts. Presents detailed descriptions of more than a dozen most popular types of vortex laser beams. Explores how optical vortices have been used in many practical applications including conventional and quantum wireless communications, micromanipulation, optical measurements with super-resolution, spiral interferometry, microscopy, and atom cooling. Presents in a systematic and detailed form many analytical and numerical results for the propagation vortex optical beams (chiefly in the linear propagation regime).




Structured Light and Its Applications


Book Description

New possibilities have recently emerged for producing optical beams with complex and intricate structures, and for the non-contact optical manipulation of matter. Structured Light and Its Applications fully describes the electromagnetic theory, optical properties, methods and applications associated with this new technology. Detailed discussions are given of unique beam characteristics, such as optical vortices and other wavefront structures, the associated phase properties and photonic aspects, along with applications ranging from cold atom manipulation to optically driven micromachines. Features include: Comprehensive and authoritative treatments of the latest research in this area of nanophotonics, written by the leading researchers Accounts of numerous microfluidics, nanofabrication, quantum informatics and optical manipulation applications Coverage that fully spans the subject area, from fundamental theory and simulations to experimental methods and results Graduate students and established researchers in academia, national laboratories and industry will find this book an invaluable guide to the latest technologies in this rapidly developing field. Comprehensive and definitive source of the latest research in nanotechnology written by the leading people in the field From theory to applications - all is presented in detail Editor is Chair of the SPIE Nanotechnology Technical Group and is leading the way in generation and manipulation of complex beams




Electromagnetic Vortices


Book Description

Discover the most recent advances in electromagnetic vortices In Electromagnetic Vortices: Wave Phenomena and Engineering Applications, a team of distinguished researchers delivers a cutting-edge treatment of electromagnetic vortex waves, including their theoretical foundation, related wave properties, and several potentially transformative applications. The book is divided into three parts. The editors first include resources that describe the generation, sorting, and manipulation of vortex waves, as well as descriptions of interesting wave behavior in the infrared and optical regimes with custom-designed nanostructures. They then discuss the generation, multiplexing, and propagation of vortex waves at the microwave and millimeter-wave frequencies. Finally, the selected contributions discuss several representative practical applications of vortex waves from a system perspective. With coverage that incorporates demonstration examples from a wide range of related sub-areas, this essential edited volume also offers: Thorough introductions to the generation of optical vortex beams and transformation optical vortex wave synthesizers Comprehensive explorations of millimeter-wave metasurfaces for high-capacity and broadband generation of vector vortex beams, as well as orbital angular momentum (OAM) detection and its observation in second harmonic generations Practical discussions of microwave SPP circuits and coding metasurfaces for vortex beam generation and OAM-based structured radio beams and their applications In-depth examinations and explorations of OAM multiplexing for wireless communications, wireless power transmission, as well as quantum communications and simulations Perfect for students of wireless communications, antenna/RF design, optical communications, and nanophotonics, Electromagnetic Vortices: Wave Phenomena and Engineering Applications is also an indispensable resource for researchers in academia, at large defense contractors, and in government labs.




Vorticity and Vortex Dynamics


Book Description

This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.




Vectorial Optical Fields


Book Description

Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations.




The Angular Momentum of Light


Book Description

The first comprehensive and authoritative coverage of the angular momentum of light, illustrating both its theoretical and applied aspects.




Vortices in Nonlinear Fields


Book Description

Symmetry breaking is partially responsible for the astounding variety of natural phenomena derived from a few simple and symmetric basic laws. Unique in its multidisciplinary scope, this book considers from a unified point of view the structure and dynamics of vortices in a variety of nonlinear field models with spontaneously broken symmetry. The theory has wide applications, including superfluids, superconductors, rotating spiral waves, and relativistic string theories. This volume is an integrated survey of this rapidly developing field.




Vortex Dominated Flows


Book Description

Honoring the contributions of one of the field's leading experts, Lu Ting, this indispensable volume contains important new results at the cutting edge of research. A wide variety of significant new analytical and numerical results in critical areas are presented, including point vortex dynamics, superconductor vortices, cavity flows, vortex breakdown, shock/vortex interaction, wake flows, magneto-hydrodynamics, rotary wake flows, and hypersonic vortex phenomena.The book will be invaluable for those interested in the state of the art of vortex dominated flows, both from a theoretical and applied perspective.Professor Lu Ting and Joe Keller have worked together for over 40 years. In their first joint work entitled ?Periodic vibrations of systems governed by nonlinear partial differential equations?, perturbation analysis and bifurcation theory were used to determine the frequencies and modes of vibration of various physical systems. The novelty was the application to partial differential equations of methods which, previously, had been used almost exclusively on ordinary differential equations. Professsor Lu Ting is an expert in both fluid dynamics and the use of matched asymptotic expansions. His physical insight into fluid flows has led the way to finding the appropriate mathematical simplications used in the solutions to many difficult flow problems.