Wisconsin's Strategy, Phase 2


Book Description







The Wisconsin Study, Phase 2. Report


Book Description










Development of a New Tracker for the CMS Upgrade Phase 2 and Study of the HL-LHC Physics Reach


Book Description

The standard model of particle physics provides a coherent description of highenergy physics processes and has been hugely successful in providing experimental predictions. Among its long list of achievements, the most significant is arguably that of the discovery of the Higgs boson half a century after being theorised, providing the last cornerstone needed for the standard model to become fully consistent. Despite huge successes, the standard model still suffers from major shortcomings. On the path leading towards a better understanding of particle physics, an in-depth study of the Higgs boson is key. This relentless work of characterising the properties of the Higgs boson is currently being undertaken at the Large Hadron Collider, where high-energy proton collisions are being recorded by dedicated detectors, providing a continuous improvement to the understanding of the standard model. Amid tremendous achievements, some processes, remain too weak to be detected with the current installations. One such measurement is the combined production of two Higgs bosons allowing for a direct handle on the Higgs self-coupling parameter of the standard model. To maximise the physics reach of the collider, it will be subjected to a major upgrade, allowing for a strong increase in luminosity. Such a dramatic change will bring major challenges to the experiments recording these collisions and upgrades are required if they are to maintain their outstanding performance. This thesis explores the upgrade of the CMS silicon strip detector, centred around the in-beam characterisation of detector module prototypes and discusses the physics reach of the upgraded machine, with an emphasis on Higgs boson pair production in the bbWW(l) final state.




The Wisconsin Action Plan


Book Description




Wisconsin Development Plan


Book Description







Non-Cooperative Game Theory


Book Description

This is a textbook for university juniors, seniors, and graduate students majoring in economics, applied mathematics, and related fields. Each chapter is structured so that a core concept of that chapter is presented with motivations, useful applications are given, and related advanced topics are discussed for future study. Many helpful exercises at various levels are provided at the end of each chapter. Therefore, this book is most suitable for readers who intend to study non-cooperative game theory rigorously for both theoretical studies and applications. Game theory consists of non-cooperative games and cooperative games. This book covers only non-cooperative games, which are major tools used in current economics and related areas. Non-cooperative game theory aims to provide a mathematical prediction of strategic choices by decision makers (players) in situations of conflicting interest. Through the logical analyses of strategic choices, we obtain a better understanding of social (economic, business) problems and possible remedies. The book contains many well-known games such as the prisoner’s dilemma, chicken (hawk–dove) game, coordination game, centipede game, and Cournot, Bertrand, and Stackelberg models in oligopoly. It also covers some advanced frameworks such as repeated games with non-simultaneous moves, repeated games with overlapping generations, global games, and voluntarily separable repeated prisoner’s dilemma, so that readers familiar with basic game theory can expand their knowledge. The author’s own research is reflected in topics such as formulations of information and evolutionary stability, which makes this book unique.