Handbook of Non-Ferrous Metal Powders


Book Description

The manufacture and use of the powders of non-ferrous metals has been taking place for many years in what was previously Soviet Russia, and a huge amount of knowledge and experience has built up in that country over the last forty years or so. Although accounts of the topic have been published in the Russian language, no English language account has existed until now.Six prominent academics and industrialists from the Ukraine and Russia have produced this highly-detailed account which covers the classification, manufacturing methods, treatment and properties of the non-ferrous metals ( aluminium, titanium, magnesium, copper, nickel, cobalt, zinc, cadmium, lead, tin, bismuth, noble metals and earth metals).The result is a formidable reference source for those in all aspects of the metal powder industry. - Covers the manufacturing methods, properties and importance of the following metals: aluminium, titanium, magnesium, copper, nickel, cobalt, zinc, cadmium, noble metals, rare earth metals, lead, tin and bismuth - Expert Russian team of authors, all very experienced - English translation and update of book previously published in Russian




Comprehensive Hard Materials


Book Description

Comprehensive Hard Materials, Three Volume Set deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds. Articles include the technologies of powder production (including their precursor materials), milling, granulation, cold and hot compaction, sintering, hot isostatic pressing, hot-pressing, injection moulding, as well as on the coating technologies for refractory metals, hard metals and hard materials. The characterization, testing, quality assurance and applications are also covered. Comprehensive Hard Materials provides meaningful insights on materials at the leading edge of technology. It aids continued research and development of these materials and as such it is a critical information resource to academics and industry professionals facing the technological challenges of the future. Hard materials operate at the leading edge of technology, and continued research and development of such materials is critical to meet the technological challenges of the future. Users of this work can improve their knowledge of basic principles and gain a better understanding of process/structure/property relationships. With the convergence of nanotechnology, coating techniques, and functionally graded materials to the cognitive science of cemented carbides, cermets, advanced ceramics, super-hard materials and composites, it is evident that the full potential of this class of materials is far from exhausted. This work unites these important areas of research and will provide useful insights to users through its extensive cross-referencing and thematic presentation. To link academic to industrial usage of hard materials and vice versa, this work deals with the production, uses and properties of the carbides, nitrides and borides of these metals and those of titanium, as well as tools of ceramics, the superhard boron nitrides and diamond and related compounds.







The Materials Selector, Second Edition


Book Description

Despite the increased understanding we now have of materials and their properties, selecting materials for a given application remains a daunting, non-trivial task. The volume of data, inadequacies in the data, and the tens of thousands of materials to choose from can overwhelm the would-be user. The Materials Selector addresses all the problems faced by materials scientists and engineers. In its three volumes you will find the properties, performance, and processability of metals, plastics, carbon and graphite, glasses, ceramics, polymerics, and composites. The characteristics and comparative economics of the manufacturing routes that convert these materials into engineering components.




Specialty Steels and Hard Materials


Book Description

Specialty Steels and Hard Materials covers the proceedings of the International Conference on Recent Developments in Specialty Steels and Hard Materials (Materials Development '82). The main focus of the materials in the selection is on the microstructural detail, alloy design, processing technology, applications, and economic viability. The first part of the title presents the invited papers in the conference; this part includes topics such as toughness in high speed steels and hard metals; the use of vanadium in low alloy structural steels; and design of strong, ductile, duplex low alloy steels. The second part of the text covers topics about high strength low alloy steels, stainless steels, and rapid solidification processing. The last part of selection deals with tungsten carbide-cobalt hard metals, non-oxide ceramics, and sintered polycrystalline ultra-hard materials. The book will be of great interest to students, researchers, and practitioners of materials engineering and metallurgy.




Tungsten


Book Description

This definitive work is the most uptodate compendium on tungsten in over twenty years. Wolf-Dieter Schubert's scientific career and extensive research activities combined with Erik Lassner's long-term industrial and development knowledge make this an essential resource on the current status of tungsten science and technology. Consolidating new knowledge previously presented at seminars or in the technical press, Tungsten is a significant contribution to the broader acceptance of the most recent innovations in the field. The text is enhanced by over 300 illustrations.




Science of Hard Materials


Book Description

This volume contains the proceedings of the first International Conference on the Science of Hard Materials held in Moran, Wyoming, Aug. 23-28, 1981. The objective of the conference was to review and advance the state of knowledge of the basic physical and chemical properties of hard materials and show how these properties influence performance in a variety of applications. To this end, the 49 con tributed papers and the four keynote papers by Prof. Fischmeister and Drs. Hintermann, Exner and Almond, present an excellent overview of the state of the art in the "science" of hard materials. The contents of these proceedings also reflect the fact that hard metal technology is now well matured and several aspects of the behavior of these materials are well understood and firmly established. Structure-property relationships in this class of materials are currently well known. Pitfalls in some of the traditional test methods have been recognized and new test methods are being developed which discriminate between intrinsic material properties and flaw content and distribution. Application of fracture mechanics, al though a late corner to the hard materials area (as compared to other structural materials), is rapidly gaining acceptance and new fracture toughness test methods are being developed. Application of modern analysis and analytical techniques to these materials has begun and entirely new and unexpected information has been obtained. For a variety of reasons, "hard metals" have dominated the research and development scene of "hard materials".




Tungsten Carbide


Book Description

Tungsten Carbide - Processing and Applications, provides fundamental and practical information of tungsten carbide from powder processing to machining technologies for industry to explore more potential applications. Tungsten carbide has attracted great interest to both engineers and academics for the sake of its excellent properties such as hard and wear-resistance, high melting point and chemically inert. It has been applied in numerous important industries including aerospace, oil and gas, automotive, semiconductor and marine as mining and cutting tools, mould and die, wear parts, etc., which also has a promising future particularly due to enabling to resist high temperature and are extremely hard.




Metal Machining


Book Description

Metal machining is the most widespread metal-shaping process in the mechanical manufacturing industry. World-wide investment in metal machining tools increases year on year - and the wealth of nations can be judged by it. This text - the most up-to-date in the field - provides in-depth discussion of the theory and application of metal machining at an advanced level. It begins with an overview of the development of metal machining and its role in the current industrial environment and continues with a discussion of the theory and practice of machining. The underlying mechanics are analysed in detail and there are extensive chapters examining applications through a discussion of simulation and process control. "Metal Machining: Theory and Applications" is essential reading for senior undergraduates and postgraduates specialising in cutting technology. It is also an invaluable reference tool for professional engineers. Professors Childs, Maekawa, Obikawa and Yamane are four of the leading authorities on metal machining and have worked together for many years.Of interest to all mechanical, manufacturing and materials engineersTheoretical and practical problems addressed