Fourth Granada Lectures in Computational Physics


Book Description

The methods developed to deal with the computational aspects of physi cal problems are useful in an increasing number of situations, from chem istry, biology and geology to engineering, communications and economics. In fact, computational physics has evolved into a trans-disciplinary field now concerned with the creative use of computers in scientific research. More over, computational methods often help students to develop a deeper under standing of key concepts, and enhance their problem-solving abilities. There fore, computational physics is recognized as having an important educational value, and educators face the task of outlining appropriate curricula to take advantage of these unique features. This is an important motivation for the publication of the contents of the Seminar on Computational Physics which is held in Granada every two years. The seminar aims at bringing together small groups of students and active researchers on different aspects of computational physics. It is part of the doctoral programme of the University of Granada. The proceedings of the previous editions were published as II Granada Lectures in Computational Physics (World Scientific, Singapore 1993) and Third Granada Lectures in Computational Physics (Lecture Notes in Physics, vol. 448, Springer, Berlin 1995) by the same editors. The present book contains the invited lecture notes and a very brief account of contributions by participants at the 4th Granada Seminar on Computational Physics (Granada, Spain, 9-14 September 1996).




Computational Physics: Ii Granada Lectures


Book Description

This book contains the invited lectures and a short account of communications at the II Granada Lectures which focused on Dynamical Systems. Key concepts such as dissipative dynamical systems, orbits, bifurcations, classical Hamiltonian chaos, KAM theorem, hyperbolic sets, time series analysis, renormalization group, quantum chaos and their applications were covered during the seminar. In addition, popular topics in computational statistical physics such as models of growth, material physics, fluids, nonequilibrium phase transitions, critical phenomena and computational astrophysics were also discussed. Written pedagogically at the graduate level, the topics were described comprehensively and supported by illustrations. This book is useful for beginners and a valuable reference for professionals in this field.




Third Granada Lectures in Computational Physics


Book Description

The book covers the basics and some generalizations of Monte Carlo methods and its applications to discrete and field theoretic models. It covers the study of nonequilibrium models of granular media by computer simulation and pattern formation. Furthermore, the lectures deal with details of phenomena such as chaos, segregation, pattern formation and phase transitions, convection, fluidification, density waves, surface reaction and growth, spread of epidemics, acoustics, deformation, etc. The book addresses students in physics and scientific computation. It should be a valuable reference work for researchers as well.




Stochastic Processes, Physics and Geometry: New Interplays. I


Book Description

This volume and "IStochastic Processes, Physics and Geometry: New Interplays II" present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers. Members of the Canadian Mathematical Society may order at the AMS member price.




Lattice-Gas Cellular Automata and Lattice Boltzmann Models


Book Description

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.




Foundations of Fluid Dynamics


Book Description

This monograph on fluid mechanics is not only a superb and unique textbook but also an impressive piece of research. It is the only textbook that fully covers turbulence, all the way from the works of Kolmogorov to modern dynamics.




Advances in Doublet Mechanics


Book Description

The recently proposed, fully multi-scale theory of doublet mechanics offers unprecented opportunities to reconcile the discrete and continuum representations of solids while maintaining a simple analytical format and full compatibility with lattice dynamics and continuum mechanics. In this monograph, a self-contained account of the state of the art in doublet mechanics is presented. Novel results in the elastodynamics of microstructured media are reported, including the identification of a new class of dispersive surface waves, and the presentation of methods for the experimental determination of the essential microstructural parameters. The relationships between doublet mechanics, lattice dynamics, and continuum theories are examined, leading to the identification of the subject areas in which the use of doublet mechanics is most advantageous. These areas include the analysis of domains as diverse as micro-electro-mechanical systems (MEMS), granular and particulate media, nanotubes, and peptide arrays.




Translation Group and Particle Representations in Quantum Field Theory


Book Description

At the time I learned quantum field theory it was considered a folk theo rem that it is easy to construct field theories fulfilling either the locality or the spectrum condition. The construction of an example for the latter case is particularly easy. Take for instance an irreducible representation of the Poincare group with positive energy, and as an algebra of observables all compact operators in that representation space. This algebra of observables is even an asymptotically Abelian algebra. Since it has only a single repre sentation - except for multiples of this one - it is hardly possible to replace locality in order to obtain a theory with a reasonable physical structure. This example shows that it is not sufficient to replace locality by asymptotic Abelian-ness. The construction of a theory fulfilling locality without a pos itive energy representation was first done by Doplicher, Regge, and Singer [DRS]. However, modern investigations on the locality ideal in the algebra oftest functions, started by Alcantara and Yngvason [AY], seem to indicate that this is a general feature; this means that most of the algebras of ob servables fulfilling the locality condition will not have representations that also fulfil the spectrum condition. This discussion shows that quantum field theory becomes a subject of interest only if both conditions are satisfied at the same time.




Indistinguishable Classical Particles


Book Description

Here, the concept of indistinguishability is defined for identical particles by the symmetry of the state, therefore applying to both the classical and the quantum framework. The author describes symmetric statistical operators and classifies these by means of extreme points. He derives de Finettis theorem for the description of infinitely extendible interchangeable random variables, and presents generalisations covering the Poisson limit and the central limit. Finally, a characterisation and interpretation of the integral representations of classical photon states in quantum optics are derived in abelian subalgebras, and unextendible indistinguishable particles are analysed in the context of non-classical photon states. Suitable for mathematical physicists and philosophers of science.




Stochastic Numerical Methods


Book Description

Stochastic Numerical Methods introduces at Master level the numerical methods that use probability or stochastic concepts to analyze random processes. The book aims at being rather general and is addressed at students of natural sciences (Physics, Chemistry, Mathematics, Biology, etc.) and Engineering, but also social sciences (Economy, Sociology, etc.) where some of the techniques have been used recently to numerically simulate different agent-based models. Examples included in the book range from phase-transitions and critical phenomena, including details of data analysis (extraction of critical exponents, finite-size effects, etc.), to population dynamics, interfacial growth, chemical reactions, etc. Program listings are integrated in the discussion of numerical algorithms to facilitate their understanding. From the contents: Review of Probability Concepts Monte Carlo Integration Generation of Uniform and Non-uniform Random Numbers: Non-correlated Values Dynamical Methods Applications to Statistical Mechanics Introduction to Stochastic Processes Numerical Simulation of Ordinary and Partial Stochastic Differential Equations Introduction to Master Equations Numerical Simulations of Master Equations Hybrid Monte Carlo Generation of n-Dimensional Correlated Gaussian Variables Collective Algorithms for Spin Systems Histogram Extrapolation Multicanonical Simulations