(Indium, Gallium)arsenide Quantum Dot Materials for Solar Cell Applications


Book Description

The last few years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of nanostructures controlling solar energy capture, conversion, and storage. Quantum confined nanostructures, such as quantum wells (QWs) and quantum dots (QDs) have been projected as potential candidates for the implementation of some high efficiency photovoltaic device concepts, including the intermediate band solar cell (IBSC). In this dissertation research, we investigated multiple inter-related themes, with the main objective of providing a deeper understanding of the physical and optical properties of QD structures relevant to the IBSC concept. These themes are: (i) Quantum engineering and control of energy levels in QDs, via a detailed study of the electronic coupling in multilayer QD structures; (ii) Controlled synthesis of well-organized, good quality, high volume density, and uniform-size QD arrays, in order to maximize the absorption efficiency and to ensure the coupling between the dots and the formation of the minibands; and (iii) Characterization of carrier dynamics and development of techniques to enhance the charge transport and efficient light harvesting. A major issue in a QD-based IBSC is the occurrence of charge trapping, followed by recombination in the dots, which results in fewer carriers being collected and hence low quantum efficiency. In order to collect most of the light-generated carriers, long radiative lifetimes, higher mobilities, and a lower probability of non-radiative recombination events in the solar cell would be desirable. QD size-dependent radiative lifetime and electronic coupling in multilayer QD structures were studied using photoluminescence (PL) and time-resolved photoluminescence (TRPL). For the uncoupled QD structures with thick barriers between the adjacent QD layers, the radiative lifetime was found to increase with the QD size, which was attributed to increased oscillator strength in smaller size dots. On the other hand, in the sample with thin barrier and electronically coupled QDs, the radiative lifetime increases and later decreases with the dot size. This is due to the enhancement of the oscillator strength in the larger size, coherently coupled QDs. In order to improve the quality of multi-layer QD structures, strain compensated barriers were introduced between the QD layers grown on off-oriented GaAs (311)B substrate. The QD shape anisotropy resulted from the growth on off-oriented substrate was studied using polarization-dependent PL measurements both on the surface and the edge of the samples. The transverse electric mode of the edge-emitted PL showed about 5° deviation from the sample surface for the dots grown on (311)B GaAs, which was attributed to the tilted vertical alignment and the shape asymmetry of dots resulted from the substrate orientation. Significant structural quality improvements were attained by introducing strain compensated barriers, i.e., reduction of misfit dislocations and uniform dot size formation. Longer lifetime (~1 ns) and enhanced PL intensity at room temperature were obtained, compared to those in conventional multilayer (In, Ga)As/GaAs QD structures. A significant increase in the open circuit voltage (V oc) was observed for the solar cell devices fabricated with the strain compensated structures. A major issue in a QD IBSC is the occurrence of charge trapping, followed by recombination in the dots, which results in fewer carriers being collected, and hence low quantum efficiency. We proposed and studied a novel structure, in which InAs QDs were sandwiched between GaAsSb (12% Sb) strain-reducing layers (SRLs) with various thicknesses. Both short (~1 ns) and long (~4-6 ns) radiative lifetimes were measured in the dots and were attributed to type-I and type-II transitions, respectively, which were induced by the band alignment modifications at the QD/barrier interface in the structures analyzed, due to the quantum confinement effect resulting from different GaAsSb barrier thicknesses. Based on our findings, a structure with type-II QD/barrier interface with relatively long radiative recombination lifetime may be a viable candidate in designing IBSC.




Optimization and Characterization of Indium Arsenide Quantum Dots for Application in III-V Material Solar Cells


Book Description

"In this work, InAs quantum dots grown by organometallic vapor-phase epitaxy (OMVPE) are investigated for application in III-V material solar cells. The first focus is on the optimization of growth parameters to produce high densities of uniform defect-free quantum dots via growth on 2" vicinal GaAs substrates. Parameters studied are InAs coverage, V/III ratio and growth rate. QDs are grown by the Stranski-Krastanov (SK) growth mode on (100) GaAs substrates misoriented toward (110) or (111) planes with various degrees of misorientation from 0° to 6°. Atomic force microscopy results indicated that as misorientation angle increased toward (110), critical thickness for quantum dot formation increased with [theta][subscript c] = 1.8 ML, 1.9 ML and 2.0 ML corresponding to 0°, 2° and 6°, respectively. Results for quantum dots grown on (111) misoriented substrates indicated, on average, that higher densities of quantum dots were achieved, compared with similar growths on substrates misoriented toward (110). Most notably, a stable average number density of 8 x 1010 cm−2 was observed over a range of growth rates of 0.1 ML/s - 0.4 ML/s on (111) misoriented substrates compared with a decreasing number density as low as 2.85 x 1010 cm−2 corresponding to a growth rate of 0.4 ML/s grown on (110) misoriented substrates. p-i-n solar cell devices with a 10-layer quantum dot superlattice imbedded in the i-region were also grown on (100) GaAs substrates misoriented 0°, 2° and 6° toward (110) as well as a set of devices grown on substrates misoriented toward (111). Device results showed a 1.0mA/cm2 enhancement to the short-circuit current for a 2° misoriented device with 2.2 ML InAs coverage per quantum dot layer. Spectral response measurements were performed and integrated spectral response showed sub-GaAs bandgap short-circuit contribution which increased with increasing InAs coverage in the quantum dot layers from 0.04mA/cm2/ML and 0.19mA/cm2/ML corresponding to 0°, 2° and 6° misorientation, respectively.""--Abstract.




Bandstructure Engineering of Indium Arsenide Quantum Dots in Gallium Arsenide Antimonide Barriers for Photovoltaic Applications


Book Description

Increasing the efficiency of solar cell technology is one of the current research aims being under taken in order to help supply growing global energy demands. The research presented in this thesis contributes to the current materials hunt for suitable candidates for an Intermediate Band Solar Cell (IBSC). A background on other "third generation" photovoltaic concepts along with details about the IBSC concept is also presented.







Self-Assembled Quantum Dots


Book Description

This multidisciplinary book provides up-to-date coverage of carrier and spin dynamics and energy transfer and structural interaction among nanostructures. Coverage also includes current device applications such as quantum dot lasers and detectors, as well as future applications to quantum information processing. The book will serve as a reference for anyone working with or planning to work with quantum dots.




The Application of Light Trapping Structures and of InGaAs/GaAs Quantum Wells and Quantum Dots to Improving the Performance of Single-junction GaAs Solar Cells


Book Description

High efficiency photovoltaic solar cells are expected to continue to be important for a variety of terrestrial and space power applications. Solar cells made of optically thick materials often cannot meet the cost, efficiency, or physical requirements for specialized applications and, increasingly, for traditional applications. This dissertation investigates improving the performance of single-junction GaAs solar cells by incorporating InGaAs/GaAs quantum wells and quantum dots to increase their spectral response bandwidth, and by incorporating structures that confine light in the devices to improve their absorption of it. InGaAs/GaAs quantum dots-in-wells extend the response of GaAs homojunction devices to wavelengths>1200 nm. Nanoparticles that are randomly deposited on the top of optically thick devices scatter light into waveguide modes of the device structures, increasing their absorption of electromagnetic energy and improving their short-circuit current by up to 16%. Multiply periodic diffractive structures have been optimized using rigorous software algorithms and fabricated on the back sides of thin film quantum dot-in-well solar cells, improving their spectral response at wavelengths 850 nm to 1200 nm, where only the quantum dot-in-well structures absorb light, by factors of up to 10. The improvement results from coupling of diffracted light to waveguide modes of the thin film device structure, and from Fabry-Perot interference effects. Simulations of absorption in these device structures corroborate the measured results and indicate that quantum well solar cells of ~2 æm in thickness, and which are equipped with optimized backside gratings, can achieve 1 Sun Airmass 0 short-circuit current densities of up to ~5 mA/cm2 (15%) greater than GaAs homojunction devices, and of up to>2 mA/cm2 (7%) greater than quantum well devices, with planar back reflectors. A combination of Fabry-Perot interference and diffraction into waveguide modes of the thin devices is shown to dominate the simulated device response spectra. Simulations also demonstrate the importance of low-loss metals for realizing optimal light trapping structures. Such device geometries are promising for reducing the cost of high efficiency solar cells that may be suitable for a variety of traditional and emerging applications.




Materials for Solar Cell Technologies II


Book Description

The book presents current R&D and new trends in the field of solar cell technologies. Topics covered include fabrication methods, various types of cell design, versatile applications of solar cells, PEDOT:PSS thermoelectric materials, transparent conducting electrodes, simulation models for solar photovoltaic materials, and hybrid materials for solar cells. Keywords: Optoelectronic Devices, PEDOT:PSS Materials, Nanomaterials, Transparent Electrodes, Hybrid Solar Cell Materials, Simulation Models, Solar Cell Design, Solar Cell Applications.







Nanoelectronics Devices: Design, Materials, and Applications Part II


Book Description

Nanoelectronics Devices: Design, Materials, and Applications provides information about the progress of nanomaterial and nanoelectronic devices and their applications in diverse fields (including semiconductor electronics, biomedical engineering, energy production and agriculture). The book is divided into two parts. The editors have included a blend of basic and advanced information with references to current research. The book is intended as an update for researchers and industry professionals in the field of electronics and nanotechnology. It can also serve as a reference book for students taking advanced courses in electronics and technology. The editors have included MCQs for evaluating the readers’ understanding of the topics covered in the book. Topics Covered in Part 2 include applications of nanoelectronics for different devices and materials. - Photonic crystal waveguide geometry - 8kW to 80kW power grids with simple energy storage systems - Two-dimensional material and based heterojunctions like MoS2 /graphene, MoS2 /CNT, and MoS2 /WS2, - 5G communication material - Wearable devices like electronic skin, intelligent wound bandages, tattoo-based electrochemical sensors - PEDOT: PSS-based EEG - New materials for medicine




Handbook of Concentrator Photovoltaic Technology


Book Description

Concentrator Photovoltaics (CPV) is one of the most promising technologies to produce solar electricity at competitive prices. High performing CPV systems with efficiencies well over 30% and multi-megawatt CPV plants are now a reality. As a result of these achievements, the global CPV market is expected to grow dramatically over the next few years reaching cumulative installed capacity of 12.5 GW by 2020. In this context, both new and consolidated players are moving fast to gain a strategic advantage in this emerging market. Written with clear, brief and self-contained technical explanations, Handbook of Concentrator Photovoltaic Technology provides a complete overview of CPV covering: the fundamentals of solar radiation, solar cells, concentrator optics, modules and trackers; all aspects of characterization and reliability; case studies based on the description of actual systems and plants in the field; environmental impact, market potential and cost analysis. CPV technology is at a key point of expansion. This timely handbook aims to provide a comprehensive assessment of all CPV scientific, technological and engineering background with a view to equipping engineers and industry professionals with all of the vital information they need to help them sustain the impetus of this encouraging technology. Key features: Uniquely combines an explanation of the fundamentals of CPV systems and components with an overview of the market place and their real-life applications. Each chapter is written by well-known industry specialists with extensive expertise in each particular field of CPV technology. Reviews the basic concepts of multi-junction solar cells and new concepts for CPV cells, highlighting the key differences between them. Demonstrates the state of the art of several CPV centres and companies. Facilitates future cost calculation models for CPV. Features extensive case studies in each chapter, including coverage of CPV modules and systems.