SOFSEM 2024


Book Description

This book constitutes the proceedings of the 49th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2024, held in Cochem, Germany, in February 2024. The 33 full papers presented in this book were carefully reviewed and selected from 81 submissions. The book also contains one invited talk in full paper length. They focus on original research and challenges in foundations of computer science including algorithms, AI-based methods, computational complexity, and formal models.




Algorithmic Decision Theory


Book Description

This book constitutes the conference proceedings of the 7th International Conference on Algorithmic Decision Theory, ADT 2021, held in Toulouse, France, in November 2021. The 27 full papers presented were carefully selected from 58 submissions. The papers focus on algorithmic decision theory broadly defined, seeking to bring together researchers and practitioners coming from diverse areas of computer science, economics and operations research in order to improve the theory and practice of modern decision support.




WALCOM: Algorithms and Computation


Book Description

This book constitutes the proceedings of the 15th International Conference on Algorithms and Computation, WALCOM 2021, which was planned to take place in Yangon, Myanmar in February/March 2021. The conference changed to an online format due to the COVID-19 pandemic. The 24 full papers included in this volume were carefully reviewed and selected from a total of 60 submissions. They cover diverseareas of algorithms and computation, such as approximation algorithms, algorithmic graph theory and combinatorics, combinatorial algorithms, combinatorial optimization, computational biology, computational complexity, computational geometry, discrete geometry, data structures, experimental algorithm methodologies, graph algorithms, graph drawing, parallel and distributed algorithms, parameterized algorithms, parameterized complexity, network optimization, online algorithms, randomized algorithms, and string algorithms.




Combinatorial Optimization and Applications


Book Description

This volume constitutes the proceedings of the 13th International Conference on Combinatorial Optimization and Applications, COCOA 2019, held in Xiamen, China, in December 2019. The 49 full papers presented in this volume were carefully reviewed and selected from 108 submissions. The papers cover the various topics, including cognitive radio networks, wireless sensor networks, cyber-physical systems, distributed and localized algorithm design and analysis, information and coding theory for wireless networks, localization, mobile cloud computing, topology control and coverage, security and privacy, underwater and underground networks, vehicular networks, information processing and data management, programmable service interfaces, energy-efficient algorithms, system and protocol design, operating system and middleware support, and experimental test-beds, models and case studies.




Combinatorial Algorithms


Book Description

This book constitutes the proceedings of the 32nd International Workshop on Combinatorial Algorithms which was planned to take place in Ottawa, ON, Canada, in July 2021. Due to the COVID-19 pandemic the conference changed to a virtual format. The 38 full papers included in this book together with 2 invited talks were carefully reviewed and selected from 107 submissions. They focus on algorithms design for the myriad of combinatorial problems that underlie computer applications in science, engineering and business. Chapter “Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Elements of dynamic and 2-SAT programming: paths, trees, and cuts


Book Description

In dieser Arbeit entwickeln wir schnellere exakte Algorithmen (schneller bezüglich der Worst-Case-Laufzeit) für Spezialfälle von Graphproblemen. Diese Algorithmen beruhen größtenteils auf dynamischem Programmieren und auf 2-SAT-Programmierung. Dynamisches Programmieren beschreibt den Vorgang, ein Problem rekursiv in Unterprobleme zu zerteilen, sodass diese Unterprobleme gemeinsame Unterunterprobleme haben. Wenn diese Unterprobleme optimal gelöst wurden, dann kombiniert das dynamische Programm diese Lösungen zu einer optimalen Lösung des Ursprungsproblems. 2-SAT-Programmierung bezeichnet den Prozess, ein Problem durch eine Menge von 2-SAT-Formeln (aussagenlogische Formeln in konjunktiver Normalform, wobei jede Klausel aus maximal zwei Literalen besteht) auszudrücken. Dabei müssen erfüllende Wahrheitswertbelegungen für eine Teilmenge der 2-SAT-Formeln zu einer Lösung des Ursprungsproblems korrespondieren. Wenn eine 2-SAT-Formel erfüllbar ist, dann kann eine erfüllende Wahrheitswertbelegung in Linearzeit in der Länge der Formel berechnet werden. Wenn entsprechende 2-SAT-Formeln also in polynomieller Zeit in der Eingabegröße des Ursprungsproblems erstellt werden können, dann kann das Ursprungsproblem in polynomieller Zeit gelöst werden. Im folgenden beschreiben wir die Hauptresultate der Arbeit. Bei dem Diameter-Problem wird die größte Distanz zwischen zwei beliebigen Knoten in einem gegebenen ungerichteten Graphen gesucht. Das Ergebnis (der Durchmesser des Eingabegraphen) gehört zu den wichtigsten Parametern der Graphanalyse. In dieser Arbeit erzielen wir sowohl positive als auch negative Ergebnisse für Diameter. Wir konzentrieren uns dabei auf parametrisierte Algorithmen für Parameterkombinationen, die in vielen praktischen Anwendungen klein sind, und auf Parameter, die eine Distanz zur Trivialität messen. Bei dem Problem Length-Bounded Cut geht es darum, ob es eine Kantenmenge begrenzter Größe in einem Eingabegraphen gibt, sodass das Entfernen dieser Kanten die Distanz zwischen zwei gegebenen Knoten auf ein gegebenes Minimum erhöht. Wir bestätigen in dieser Arbeit eine Vermutung aus der wissenschaftlichen Literatur, dass Length-Bounded Cut in polynomieller Zeit in der Eingabegröße auf Einheitsintervallgraphen (Intervallgraphen, in denen jedes Intervall die gleiche Länge hat) gelöst werden kann. Der Algorithmus basiert auf dynamischem Programmieren. k-Disjoint Shortest Paths beschreibt das Problem, knotendisjunkte Pfade zwischen k gegebenen Knotenpaaren zu suchen, sodass jeder der k Pfade ein kürzester Pfad zwischen den jeweiligen Endknoten ist. Wir beschreiben ein dynamisches Programm mit einer Laufzeit n^O((k+1)!) für dieses Problem, wobei n die Anzahl der Knoten im Eingabegraphen ist. Dies zeigt, dass k-Disjoint Shortest Paths in polynomieller Zeit für jedes konstante k gelöst werden kann, was für über 20 Jahre ein ungelöstes Problem der algorithmischen Graphentheorie war. Das Problem Tree Containment fragt, ob ein gegebener phylogenetischer Baum T in einem gegebenen phylogenetischen Netzwerk N enthalten ist. Ein phylogenetisches Netzwerk (bzw. ein phylogenetischer Baum) ist ein gerichteter azyklischer Graph (bzw. ein gerichteter Baum) mit genau einer Quelle, in dem jeder Knoten höchstens eine ausgehende oder höchstens eine eingehende Kante hat und jedes Blatt eine Beschriftung trägt. Das Problem stammt aus der Bioinformatik aus dem Bereich der Suche nach dem Baums des Lebens (der Geschichte der Artenbildung). Wir führen eine neue Variante des Problems ein, die wir Soft Tree Containment nennen und die bestimmte Unsicherheitsfaktoren berücksichtigt. Wir zeigen mit Hilfe von 2-SAT-Programmierung, dass Soft Tree Containment in polynomieller Zeit gelöst werden kann, wenn N ein phylogenetischer Baum ist, in dem jeweils maximal zwei Blätter die gleiche Beschriftung tragen. Wir ergänzen dieses Ergebnis mit dem Beweis, dass Soft Tree Containment NP-schwer ist, selbst wenn N auf phylogenetische Bäume beschränkt ist, in denen jeweils maximal drei Blätter die gleiche Beschriftung tragen. Abschließend betrachten wir das Problem Reachable Object. Hierbei wird nach einer Sequenz von rationalen Tauschoperationen zwischen Agentinnen gesucht, sodass eine bestimmte Agentin ein bestimmtes Objekt erhält. Eine Tauschoperation ist rational, wenn beide an dem Tausch beteiligten Agentinnen ihr neues Objekt gegenüber dem jeweiligen alten Objekt bevorzugen. Reachable Object ist eine Verallgemeinerung des bekannten und viel untersuchten Problems Housing Market. Hierbei sind die Agentinnen in einem Graphen angeordnet und nur benachbarte Agentinnen können Objekte miteinander tauschen. Wir zeigen, dass Reachable Object NP-schwer ist, selbst wenn jede Agentin maximal drei Objekte gegenüber ihrem Startobjekt bevorzugt und dass Reachable Object polynomzeitlösbar ist, wenn jede Agentin maximal zwei Objekte gegenüber ihrem Startobjekt bevorzugt. Wir geben außerdem einen Polynomzeitalgorithmus für den Spezialfall an, in dem der Graph der Agentinnen ein Kreis ist. Dieser Polynomzeitalgorithmus basiert auf 2-SAT-Programmierung. This thesis presents faster (in terms of worst-case running times) exact algorithms for special cases of graph problems through dynamic programming and 2-SAT programming. Dynamic programming describes the procedure of breaking down a problem recursively into overlapping subproblems, that is, subproblems with common subsubproblems. Given optimal solutions to these subproblems, the dynamic program then combines them into an optimal solution for the original problem. 2-SAT programming refers to the procedure of reducing a problem to a set of 2-SAT formulas, that is, boolean formulas in conjunctive normal form in which each clause contains at most two literals. Computing whether such a formula is satisfiable (and computing a satisfying truth assignment, if one exists) takes linear time in the formula length. Hence, when satisfying truth assignments to some 2-SAT formulas correspond to a solution of the original problem and all formulas can be computed efficiently, that is, in polynomial time in the input size of the original problem, then the original problem can be solved in polynomial time. We next describe our main results. Diameter asks for the maximal distance between any two vertices in a given undirected graph. It is arguably among the most fundamental graph parameters. We provide both positive and negative parameterized results for distance-from-triviality-type parameters and parameter combinations that were observed to be small in real-world applications. In Length-Bounded Cut, we search for a bounded-size set of edges that intersects all paths between two given vertices of at most some given length. We confirm a conjecture from the literature by providing a polynomial-time algorithm for proper interval graphs which is based on dynamic programming. k-Disjoint Shortest Paths is the problem of finding (vertex-)disjoint paths between given vertex terminals such that each of these paths is a shortest path between the respective terminals. Its complexity for constant k > 2 has been an open problem for over 20 years. Using dynamic programming, we show that k-Disjoint Shortest Paths can be solved in polynomial time for each constant k. The problem Tree Containment asks whether a phylogenetic tree T is contained in a phylogenetic network N. A phylogenetic network (or tree) is a leaf-labeled single-source directed acyclic graph (or tree) in which each vertex has in-degree at most one or out-degree at most one. The problem stems from computational biology in the context of the tree of life (the history of speciation). We introduce a particular variant that resembles certain types of uncertainty in the input. We show that if each leaf label occurs at most twice in a phylogenetic tree N, then the problem can be solved in polynomial time and if labels can occur up to three times, then the problem becomes NP-hard. Lastly, Reachable Object is the problem of deciding whether there is a sequence of rational trades of objects among agents such that a given agent can obtain a certain object. A rational trade is a swap of objects between two agents where both agents profit from the swap, that is, they receive objects they prefer over the objects they trade away. This problem can be seen as a natural generalization of the well-known and well-studied Housing Market problem where the agents are arranged in a graph and only neighboring agents can trade objects. We prove a dichotomy result that states that the problem is polynomial-time solvable if each agent prefers at most two objects over its initially held object and it is NP-hard if each agent prefers at most three objects over its initially held object. We also provide a polynomial-time 2-SAT program for the case where the graph of agents is a cycle.




Classic graph problems made temporal – a parameterized complexity analysis


Book Description

This thesis investigates the parameterized computational complexity of six classic graph problems lifted to a temporal setting. More specifically, we consider problems defined on temporal graphs, that is, a graph where the edge set may change over a discrete time interval, while the vertex set remains unchanged. Temporal graphs are well-suited to model dynamic data and hence they are naturally motivated in contexts where dynamic changes or time-dependent interactions play an important role, such as, for example, communication networks, social networks, or physical proximity networks. The most important selection criteria for our problems was that they are well-motivated in the context of dynamic data analysis. Since temporal graphs are mathematically more complex than static graphs, it is maybe not surprising that all problems we consider in this thesis are NP-hard. We focus on the development of exact algorithms, where our goal is to obtain fixed-parameter tractability results, and refined computational hardness reductions that either show NP-hardness for very restricted input instances or parameterized hardness with respect to “large” parameters. In the context of temporal graphs, we mostly consider structural parameters of the underlying graph, that is, the graph obtained by ignoring all time information. However, we also consider parameters of other types, such as ones trying to measure how fast the temporal graph changes over time. In the following we briefly discuss the problem setting and the main results. Restless Temporal Paths. A path in a temporal graph has to respect causality, or time, which means that the edges used by a temporal path have to appear at non-decreasing times. We investigate temporal paths that additionally have a maximum waiting time in every vertex of the temporal graph. Our main contributions are establishing NP-hardness for the problem of finding restless temporal paths even in very restricted cases, and showing W[1]-hardness with respect to the feedback vertex number of the underlying graph. Temporal Separators. A temporal separator is a vertex set that, when removed from the temporal graph, destroys all temporal paths between two dedicated vertices. Our contribution here is twofold: Firstly, we investigate the computational complexity of finding temporal separators in temporal unit interval graphs, a generalization of unit interval graphs to the temporal setting. We show that the problem is NP-hard on temporal unit interval graphs but we identify an additional restriction which makes the problem solvable in polynomial time. We use the latter result to develop a fixed-parameter algorithm with a “distance-to-triviality” parameterization. Secondly, we show that finding temporal separators that destroy all restless temporal paths is Σ-P-2-hard. Temporal Matchings. We introduce a model for matchings in temporal graphs, where, if two vertices are matched at some point in time, then they have to “recharge” afterwards, meaning that they cannot be matched again for a certain number of time steps. In our main result we employ temporal line graphs to show that finding matchings is NP-hard even on instances where the underlying graph is a path. Temporal Coloring. We lift the classic graph coloring problem to the temporal setting. In our model, every edge has to be colored properly (that is,the endpoints are colored differently) at least once in every time interval of a certain length. We show that this problem is NP-hard in very restricted cases, even if we only have two colors. We present simple exponential-time algorithms to solve this problem. As a main contribution, we show that these algorithms presumably cannot be improved significantly. Temporal Cliques and s-Plexes. We propose a model for temporal s-plexes that is a canonical generalization of an existing model for temporal cliques. Our main contribution is a fixed-parameter algorithm that enumerates all maximal temporal s-plexes in a given temporal graph, where we use a temporal adaptation of degeneracy as a parameter. Temporal Cluster Editing. We present a model for cluster editing in temporal graphs, where we want to edit all “layers” of a temporal graph into cluster graphs that are sufficiently similar. Our main contribution is a fixed-parameter algorithm with respect to the parameter “number of edge modifications” plus the “measure of similarity” of the resulting clusterings. We further show that there is an efficient preprocessing procedure that can provably reduce the size of the input instance to be independent of the number of vertices of the original input instance.




Algorithms and Data Structures


Book Description

This book constitutes the refereed proceedings of the 16th International Symposium on Algorithms and Data Structures, WADS, 2019, held in Edmonton, AB, Canada, in August 2019. The 42 full papers presented together with 3 invited lectures, we carefully reviewed and selected from a total of 88 submissions. They present original research on the theory and application of algorithms and data structures in many areas, including combinatorics, computational geometry, databases, graphics, and parallel and distributed computing.




Graph-Theoretic Concepts in Computer Science


Book Description

This book constitutes the revised papers of the 45th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2019, held in Vall de Núria, Spain, in June 2019. The 29 full papers presented in this volume were carefully reviewed and selected from 87 submissions. They cover a wide range of areas, aiming at connecting theory and applications by demonstrating how graph-theoretic concepts can be applied in various areas of computer science. Another focus is on presenting recent results and on identifying and exploring promising directions of future research.




Algorithm Theory -- SWAT 2014


Book Description

This book constitutes the refereed proceedings of the 14th International Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2014, held in Copenhagen, Denmark, in July 2014. The 33 papers were carefully reviewed and selected from a total of 134 submissions. The papers present original research and cover a wide range of topics in the field of design and analysis of algorithms and data structures including but not limited to approximation algorithms, parameterized algorithms, computational biology, computational geometry and topology, distributed algorithms, external-memory algorithms, exponential algorithms, graph algorithms, online algorithms, optimization algorithms, randomized algorithms, streaming algorithms, string algorithms, sublinear algorithms and algorithmic game theory.