200 Tips for Mastering Generative AI


Book Description

In the rapidly evolving landscape of artificial intelligence, Generative AI stands out as a transformative force with the potential to revolutionize industries and reshape our understanding of creativity and automation. From its inception, Generative AI has captured the imagination of researchers, developers, and entrepreneurs, offering unprecedented capabilities in generating new data, simulating complex systems, and solving intricate problems that were once considered beyond the reach of machines. This book, "200 Tips for Mastering Generative AI," is a comprehensive guide designed to empower you with the knowledge and practical insights needed to harness the full potential of Generative AI. Whether you are a seasoned AI practitioner, a curious researcher, a forward-thinking entrepreneur, or a passionate enthusiast, this book provides valuable tips and strategies to navigate the vast and intricate world of Generative AI. We invite you to explore, experiment, and innovate with the knowledge you gain from this book. Together, we can unlock the full potential of Generative AI and shape a future where intelligent machines and human creativity coexist and collaborate in unprecedented ways. Welcome to "200 Tips for Mastering Generative AI." Your journey into the fascinating world of Generative AI begins here.




Generative AI with Amazon Bedrock


Book Description

Become proficient in Amazon Bedrock by taking a hands-on approach to building and scaling generative AI solutions that are robust, secure, and compliant with ethical standards Key Features Learn the foundations of Amazon Bedrock from experienced AWS Machine Learning Specialist Architects Master the core techniques to develop and deploy several AI applications at scale Go beyond writing good prompting techniques and secure scalable frameworks by using advanced tips and tricks Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe concept of generative artificial intelligence has garnered widespread interest, with industries looking to leverage it to innovate and solve business problems. Amazon Bedrock, along with LangChain, simplifies the building and scaling of generative AI applications without needing to manage the infrastructure. Generative AI with Amazon Bedrock takes a practical approach to enabling you to accelerate the development and integration of several generative AI use cases in a seamless manner. You’ll explore techniques such as prompt engineering, retrieval augmentation, fine-tuning generative models, and orchestrating tasks using agents. The chapters take you through real-world scenarios and use cases such as text generation and summarization, image and code generation, and the creation of virtual assistants. The latter part of the book shows you how to effectively monitor and ensure security and privacy in Amazon Bedrock. By the end of this book, you’ll have gained a solid understanding of building and scaling generative AI apps using Amazon Bedrock, along with various architecture patterns and security best practices that will help you solve business problems and drive innovation in your organization.What you will learn Explore the generative AI landscape and foundation models in Amazon Bedrock Fine-tune generative models to improve their performance Explore several architecture patterns for different business use cases Gain insights into ethical AI practices, model governance, and risk mitigation strategies Enhance your skills in employing agents to develop intelligence and orchestrate tasks Monitor and understand metrics and Amazon Bedrock model response Explore various industrial use cases and architectures to solve real-world business problems using RAG Stay on top of architectural best practices and industry standards Who this book is for This book is for generalist application engineers, solution engineers and architects, technical managers, ML advocates, data engineers, and data scientists looking to either innovate within their organization or solve business use cases using generative AI. A basic understanding of AWS APIs and core AWS services for machine learning is expected.




Deep Learning with Python


Book Description

Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance




AI in Talent Development


Book Description

Creating Transparent AI From agriculture to transportation, entertainment to medicine, and banking to social media, artificial intelligence (AI) is changing how humans do practically everything. We experience AI in our daily lives through our fitness trackers, home digital assistant systems, and curated news services, to name a few examples. For talent development, this is no different. The fields of artificial intelligence and talent development have been on a collision course for decades, and their convergence has already occurred. It has just taken many in our profession some time to recognize this fact. On the horizon, AI-powered innovations are transforming the workplace and the role of the talent development professional, affecting recruiting to training to compensation. As such, there are actions TD professionals should take now to prepare ourselves and our organizations for the evolving AI revolution. In AI in Talent Development, Margie Meacham describes the benefits, uses, and risks of AI technology and offers practical tools to strengthen and enhance learning and performance programs. In layman’s terms, Meacham demonstrates how we can free time for ourselves by employing a useful robot “assistant,” create a chatbot for specific tasks (such as a new manager bot, a sales coach bot, or new employee onboarding bot), and build personalized coaching tools from AI-processed big data. She concludes each of the six chapters with helpful tips and includes a resource guide with planning tools, templates, and worksheets. Meacham dispels fear of AI’s black box—the term used to describe its unknowability and opacity—and points out ways AI can help us be better at creativity and critical thinking, what we humans do best.




Dive Into Deep Learning


Book Description

The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.




Mathematics for Machine Learning


Book Description

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.




Mastering PyTorch


Book Description

Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more Book DescriptionDeep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text and music generating models using PyTorch Build a deep Q-network (DQN) model in PyTorch Export universal PyTorch models using Open Neural Network Exchange (ONNX) Become well-versed with rapid prototyping using PyTorch with fast.ai Perform neural architecture search effectively using AutoML Easily interpret machine learning (ML) models written in PyTorch using Captum Design ResNets, LSTMs, Transformers, and more using PyTorch Find out how to use PyTorch for distributed training using the torch.distributed API Who this book is for This book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.




Pattern Recognition and Machine Learning


Book Description

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.




Mastering Machine Learning for Penetration Testing


Book Description

Become a master at penetration testing using machine learning with Python Key Features Identify ambiguities and breach intelligent security systems Perform unique cyber attacks to breach robust systems Learn to leverage machine learning algorithms Book Description Cyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it’s important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes. This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you’ve gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you’ll see how to find loopholes and surpass a self-learning security system. As you make your way through the chapters, you’ll focus on topics such as network intrusion detection and AV and IDS evasion. We’ll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system. By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system. What you will learn Take an in-depth look at machine learning Get to know natural language processing (NLP) Understand malware feature engineering Build generative adversarial networks using Python libraries Work on threat hunting with machine learning and the ELK stack Explore the best practices for machine learning Who this book is for This book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.




Machine Learning Algorithms


Book Description

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide About This Book Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide. Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation. Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide. Who This Book Is For This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here. What You Will Learn Acquaint yourself with important elements of Machine Learning Understand the feature selection and feature engineering process Assess performance and error trade-offs for Linear Regression Build a data model and understand how it works by using different types of algorithm Learn to tune the parameters of Support Vector machines Implement clusters to a dataset Explore the concept of Natural Processing Language and Recommendation Systems Create a ML architecture from scratch. In Detail As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge. In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously. On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem. Style and approach An easy-to-follow, step-by-step guide that will help you get to grips with real -world applications of Algorithms for Machine Learning.