Semiconductor Lasers


Book Description

Semiconductor lasers have important applications in numerous fields, including engineering, biology, chemistry and medicine. They form the backbone of the optical telecommunications infrastructure supporting the internet, and are used in information storage devices, bar-code scanners, laser printers and many other everyday products. Semiconductor lasers: Fundamentals and applications is a comprehensive review of this vital technology.Part one introduces the fundamentals of semiconductor lasers, beginning with key principles before going on to discuss photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation. Part two then reviews applications of visible and near-infrared emitting lasers. Nonpolar and semipolar GaN-based lasers, advanced self-assembled InAs quantum dot lasers and vertical cavity surface emitting lasers are all considered, in addition to semiconductor disk and hybrid silicon lasers. Finally, applications of mid- and far-infrared emitting lasers are the focus of part three. Topics covered include GaSb-based type I quantum well diode lasers, interband cascade and terahertz quantum cascade lasers, whispering gallery mode lasers and tunable mid-infrared laser absorption spectroscopy.With its distinguished editors and international team of expert contributors, Semiconductor lasers is a valuable guide for all those involved in the design, operation and application of these important lasers, including laser and telecommunications engineers, scientists working in biology and chemistry, medical practitioners, and academics working in this field. - Provides a comprehensive review of semiconductor lasers and their applications in engineering, biology, chemistry and medicine - Discusses photonic crystal lasers, high power semiconductor lasers and laser beams, and the use of semiconductor lasers in ultrafast pulse generation - Reviews applications of visible and near-infrared emitting lasers and mid- and far-infrared emitting lasers




Handbook of Research on Solar Energy Systems and Technologies


Book Description

The last ten years have seen rapid advances in nanoscience and nanotechnology, allowing unprecedented manipulation of the nanoscale structures controlling solar capture, conversion, and storage. Filled with cutting-edge solar energy research and reference materials, the Handbook of Research on Solar Energy Systems and Technologies serves as a one-stop resource for the latest information regarding different topical areas within solar energy. This handbook will emphasize the application of nanotechnology innovations to solar energy technologies, explore current and future developments in third generation solar cells, and provide a detailed economic analysis of solar energy applications.







The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics


Book Description

Written by a team of European experts in the field, this book addresses the physics, the principles, the engineering methods, and the latest developments of efficient and compact ultrafast lasers based on novel quantum-dot structures and devices, as well as their applications in biophotonics. Recommended reading for physicists, engineers, students and lecturers in the fields of photonics, optics, laser physics, optoelectronics, and biophotonics.




Advancement in Sensing Technology


Book Description

The book presents the recent advancements in the area of sensors and sensing technology, specifically in environmental monitoring, structural health monitoring, dielectric, magnetic, electrochemical, ultrasonic, microfluidic, flow, surface acoustic wave, gas, cloud computing and bio-medical. This book will be useful to a variety of readers, namely, Master and PhD degree students, researchers, practitioners, working on sensors and sensing technology. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.




Opportunities in Intense Ultrafast Lasers


Book Description

The laser has revolutionized many areas of science and society, providing bright and versatile light sources that transform the ways we investigate science and enables trillions of dollars of commerce. Now a second laser revolution is underway with pulsed petawatt-class lasers (1 petawatt: 1 million billion watts) that deliver nearly 100 times the total world's power concentrated into a pulse that lasts less than one-trillionth of a second. Such light sources create unique, extreme laboratory conditions that can accelerate and collide intense beams of elementary particles, drive nuclear reactions, heat matter to conditions found in stars, or even create matter out of the empty vacuum. These powerful lasers came largely from U.S. engineering, and the science and technology opportunities they enable were discussed in several previous National Academies' reports. Based on these advances, the principal research funding agencies in Europe and Asia began in the last decade to invest heavily in new facilities that will employ these high-intensity lasers for fundamental and applied science. No similar programs exist in the United States. Opportunities in Intense Ultrafast Lasers assesses the opportunities and recommends a path forward for possible U.S. investments in this area of science.




Ultra-Realistic Imaging


Book Description

Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a te




Handbook of Laser Technology and Applications


Book Description

This comprehensive handbook gives a fully updated guide to lasers and laser systems, including the complete range of their technical applications. The first volume outlines the fundamental components of lasers, their properties and working principles. The second volume gives exhaustive coverage of all major categories of lasers, from solid-state and semiconductor diode to fiber, waveguide, gas, chemical, and dye lasers. The third volume covers modern applications in engineering and technology, including all new and updated case studies spanning telecommunications and data storage to medicine, optical measurement, defense and security, nanomaterials processing and characterization.




Photonics, Plasmonics and Information Optics


Book Description

This edited volume covers technological developments and current research trends in the field of photonics, plasmonics and optics, focusing on photonic crystals, semiconductor optical devices, optical communications and optical sensors, with an emphasis on practical sectors. It broadly contains the latest research domains contributed by experts and researchers in their respective fields with a major focus on the basic physics. Works in the area of electromagnetic bandgap structures (EBG) and metasurfaces are included for applications in different aspects of communications systems. Further, it covers research phenomena of microwave photonic devices to develop miniaturized high-frequency devices. FEATURES Reviews nonlinear optical phenomena related with materials and crystals and plasmonic effects on device fabrications Contains a detailed analysis on photonic crystals with their applications in making all-optical passive components Focusses on nonlinear optics, more precisely on crystals and materials, and computational aspects on evaluating their properties from Maxwell’s equations Presents an extensive study on the physics of EBG structures for application in antenna and high-frequency communications Includes metamaterials and metasurfaces for applications in photonics as well as in microwave engineering for high-frequency communication systems Photonics, Plasmonics and Information Optics: Research and Technological Advances is aimed at researchers, professionals and graduate students in optical communication, silicon photonics, photonic crystals, semiconductor optical devices, metamaterials and metasurfaces, and microwave photonics.




Detection Efficiency and Bandwidth Optimized Electro-Optic Sampling of Mid-Infrared Waves


Book Description

This thesis investigates the detection efficiency of field-resolved measurements of ultrashort mid-infrared waves via electro-optic sampling for the first time. Employing high-power gate pulses and phase-matched upconversion in thick nonlinear crystals, unprecedented efficiencies are achieved for octave-spanning fields in this wavelength range. In combination with state-of-the art, high-power, ultrashort mid-infrared sources, this allows to demonstrate a new regime of linear detection dynamic range for field strengths from mV/cm to MV/cm-levels. These results crucially contribute to the development of field-resolved spectrometers for early disease detection, as fundamental vibrational modes of (bio-)molecules lie in the investigated spectral range. The results are discussed and compared with previous sensitivity records for electric-field measurements and reference is made to related implementations of the described characterization technique. Including a detailed theoretical description and simulation results, the work elucidates crucial scaling laws, characteristics and limitations. The thesis will thus serve as an educational introduction to the topic of field-resolved measurements using electro-optic sampling, giving detailed instructions on simulations and experimental implementations. At the same time, it showcases the state-of-the-art in terms of detection sensitivity for characterizing mid-infrared waves.