Advanced Interconnects for ULSI Technology


Book Description

Finding new materials for copper/low-k interconnects is critical to the continuing development of computer chips. While copper/low-k interconnects have served well, allowing for the creation of Ultra Large Scale Integration (ULSI) devices which combine over a billion transistors onto a single chip, the increased resistance and RC-delay at the smaller scale has become a significant factor affecting chip performance. Advanced Interconnects for ULSI Technology is dedicated to the materials and methods which might be suitable replacements. It covers a broad range of topics, from physical principles to design, fabrication, characterization, and application of new materials for nano-interconnects, and discusses: Interconnect functions, characterisations, electrical properties and wiring requirements Low-k materials: fundamentals, advances and mechanical properties Conductive layers and barriers Integration and reliability including mechanical reliability, electromigration and electrical breakdown New approaches including 3D, optical, wireless interchip, and carbon-based interconnects Intended for postgraduate students and researchers, in academia and industry, this book provides a critical overview of the enabling technology at the heart of the future development of computer chips.




Fundamentals of Bias Temperature Instability in MOS Transistors


Book Description

This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also in Si FinFETs. The contents also include a detailed investigation of the gate insulator process dependence of BTI in differently processed SiON and HKMG MOSFETs. The book then goes on to discuss Reaction-Diffusion (RD) model to estimate generation of new traps for DC and AC NBTI stress and Transient Trap Occupancy Model (TTOM) to estimate charge occupancy of generated traps and their contribution to BTI degradation. Finally, a comprehensive NBTI modeling framework including TTOM enabled RD model and hole trapping to predict time evolution of BTI degradation and recovery during and after DC stress for different stress and recovery biases and temperature, during consecutive arbitrary stress and recovery cycles and during AC stress at different frequency and duty cycle. The contents of this book should prove useful to academia and professionals alike.




Terrestrial Radiation Effects in ULSI Devices and Electronic Systems


Book Description

This book provides the reader with knowledge on a wide variety of radiation fields and their effects on the electronic devices and systems. The author covers faults and failures in ULSI devices induced by a wide variety of radiation fields, including electrons, alpha-rays, muons, gamma rays, neutrons and heavy ions. Readers will learn how to make numerical models from physical insights, to determine the kind of mathematical approaches that should be implemented to analyze radiation effects. A wide variety of prediction, detection, characterization and mitigation techniques against soft-errors are reviewed and discussed. The author shows how to model sophisticated radiation effects in condensed matter in order to quantify and control them, and explains how electronic systems including servers and routers are shut down due to environmental radiation. Provides an understanding of how electronic systems are shut down due to environmental radiation by constructing physical models and numerical algorithms Covers both terrestrial and avionic-level conditions Logically presented with each chapter explaining the background physics to the topic followed by various modelling techniques, and chapter summary Written by a widely-recognized authority in soft-errors in electronic devices Code samples available for download from the Companion Website This book is targeted at researchers and graduate students in nuclear and space radiation, semiconductor physics and electron devices, as well as other areas of applied physics modelling. Researchers and students interested in how a variety of physical phenomena can be modelled and numerically treated will also find this book to present helpful methods.




Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits


Book Description

Increasing performance demands in integrated circuits, together with limited energy budgets, force IC designers to find new ways of saving power. One innovative way is the presented adaptive voltage scaling scheme, which tunes the supply voltage according to the present process, voltage and temperature variations as well as aging. The voltage is adapted “on the fly” by means of in-situ delay monitors to exploit unused timing margin, produced by state-of-the-art worst-case designs. This book discusses the design of the enhanced in-situ delay monitors and the implementation of the complete control-loop comprising the monitors, a control-logic and an on-chip voltage regulator. An analytical Markov-based model of the control-loop is derived to analyze its robustness and stability. Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits provides an in-depth assessment of the proposed voltage scaling scheme when applied to an arithmetic and an image processing circuit. This book is written for engineers interested in adaptive techniques for low-power CMOS circuits.




Security Opportunities in Nano Devices and Emerging Technologies


Book Description

The research community lacks both the capability to explain the effectiveness of existing techniques and the metrics to predict the security properties and vulnerabilities of the next generation of nano-devices and systems. This book provides in-depth viewpoints on security issues and explains how nano devices and their unique properties can address the opportunities and challenges of the security community, manufacturers, system integrators, and end users. This book elevates security as a fundamental design parameter, transforming the way new nano-devices are developed. Part 1 focuses on nano devices and building security primitives. Part 2 focuses on emerging technologies and integrations.




Conductive Atomic Force Microscopy


Book Description

The first book to summarize the applications of CAFM as the most important method in the study of electronic properties of materials and devices at the nanoscale. To provide a global perspective, the chapters are written by leading researchers and application scientists from all over the world and cover novel strategies, configurations and setups where new information will be obtained with the help of CAFM. With its substantial content and logical structure, this is a valuable reference for researchers working with CAFM or planning to use it in their own fields of research.




Nano-Semiconductors


Book Description

With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry’s transition from standard CMOS silicon to novel device structures—including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials—this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution from micro- to nanoelectronics. The book is divided into three parts that address: Semiconductor materials (i.e., carbon nanotubes, memristors, and spin organic devices) Silicon devices and technology (i.e., BiCMOS, SOI, various 3D integration and RAM technologies, and solar cells) Compound semiconductor devices and technology This reference explores the groundbreaking opportunities in emerging materials that will take system performance beyond the capabilities of traditional CMOS-based microelectronics. Contributors cover topics ranging from electrical propagation on CNT to GaN HEMTs technology and applications. Approaching the trillion-dollar nanotech industry from the perspective of real market needs and the repercussions of technological barriers, this resource provides vital information about elemental device architecture alternatives that will lead to massive strides in future development.




Rugged Embedded Systems


Book Description

Rugged Embedded Systems: Computing in Harsh Environments describes how to design reliable embedded systems for harsh environments, including architectural approaches, cross-stack hardware/software techniques, and emerging challenges and opportunities. A "harsh environment" presents inherent characteristics, such as extreme temperature and radiation levels, very low power and energy budgets, strict fault tolerance and security constraints, etc. that challenge the computer system in its design and operation. To guarantee proper execution (correct, safe, and low-power) in such scenarios, this contributed work discusses multiple layers that involve firmware, operating systems, and applications, as well as power management units and communication interfaces. This book also incorporates use cases in the domains of unmanned vehicles (advanced cars and micro aerial robots) and space exploration as examples of computing designs for harsh environments. - Provides a deep understanding of embedded systems for harsh environments by experts involved in state-of-the-art autonomous vehicle-related projects - Covers the most important challenges (fault tolerance, power efficiency, and cost effectiveness) faced when developing rugged embedded systems - Includes case studies exploring embedded computing for autonomous vehicle systems (advanced cars and micro aerial robots) and space exploration




Wide Bandgap Semiconductor Electronics And Devices


Book Description

'This book is more suited for researchers already familiar with WBS who are interested in developing new WBG materials and devices since it provides the latest developments in new materials and processes and trends for WBS and UWBS technology.'IEEE Electrical Insulation MagazineWith the dawn of Gallium Oxide (Ga2O₃) and Aluminum Gallium Nitride (AlGaN) electronics and the commercialization of Gallium Nitride (GaN) and Silicon Carbide (SiC) based devices, the field of wide bandgap materials and electronics has never been more vibrant and exciting than it is now. Wide bandgap semiconductors have had a strong presence in the research and development arena for many years. Recently, the increasing demand for high efficiency power electronics and high speed communication electronics, together with the maturity of the synthesis and fabrication of wide bandgap semicon-ductors, has catapulted wide bandgap electronics and optoelectronics into the mainstream.Wide bandgap semiconductors exhibit excellent material properties, which can potentially enable power device operation at higher efficiency, higher temperatures, voltages, and higher switching speeds than current Si technology. This edited volume will serve as a useful reference for researchers in this field — newcomers and experienced alike.This book discusses a broad range of topics including fundamental transport studies, growth of high-quality films, advanced materials characterization, device modeling, high frequency, high voltage electronic devices and optical devices written by the experts in their respective fields. They also span the whole spectrum of wide bandgap materials including AlGaN, Ga2O₃and diamond.




Soft Errors


Book Description

Soft errors are a multifaceted issue at the crossroads of applied physics and engineering sciences. Soft errors are by nature multiscale and multiphysics problems that combine not only nuclear and semiconductor physics, material sciences, circuit design, and chip architecture and operation, but also cosmic-ray physics, natural radioactivity issues, particle detection, and related instrumentation. Soft Errors: From Particles to Circuits addresses the problem of soft errors in digital integrated circuits subjected to the terrestrial natural radiation environment—one of the most important primary limits for modern digital electronic reliability. Covering the fundamentals of soft errors as well as engineering considerations and technological aspects, this robust text: Discusses the basics of the natural radiation environment, particle interactions with matter, and soft-error mechanisms Details instrumentation developments in the fields of environment characterization, particle detection, and real-time and accelerated tests Describes the latest computational developments, modeling, and simulation strategies for the soft error-rate estimation in digital circuits Explores trends for future technological nodes and emerging devices Soft Errors: From Particles to Circuits presents the state of the art of this complex subject, providing comprehensive knowledge of the complete chain of the physics of soft errors. The book makes an ideal text for introductory graduate-level courses, offers academic researchers a specialized overview, and serves as a practical guide for semiconductor industry engineers or application engineers.