Deep In-memory Architectures for Machine Learning


Book Description

This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware.







PROCEEDINGS OF THE 24TH CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN – FMCAD 2024


Book Description

Die Proceedings zur Konferenz „Formal Methods in Computer-Aided Design 2024“ geben aktuelle Einblicke in ein spannendes Forschungsfeld. Zum fünften Mal erscheinen die Beiträge der Konferenzreihe „Formal Methods in Computer-Aided Design“ (FMCAD) als Konferenzband bei TU Wien Academic Press. Der aktuelle Band der seit 2006 jährlich veranstalteten Konferenzreihe präsentiert in 35 Beiträgen neueste wissenschaftliche Erkenntnisse aus dem Bereich des computergestützten Entwerfens. Die Beiträge behandeln formale Aspekte des computergestützten Systemdesigns einschließlich Verifikation, Spezifikation, Synthese und Test. Die FMCAD-Konferenz findet im Oktober 2024 in Prag, Tschechische Republik, statt. Sie gilt als führendes Forum im Bereich des computer-aided design und bietet seit ihrer Gründung Forschenden sowohl aus dem akademischen als auch dem industriellen Umfeld die Möglichkeit, sich auszutauschen und zu vernetzen.







Genetic Programming


Book Description




Data Orchestration in Deep Learning Accelerators


Book Description

This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.













Runtime Verification


Book Description