21 Impossible Things: Quantum Physics And Relativity For Everyone


Book Description

Quantum physics and relativity, two of the most important advances in modern science, are normally presented as a series of technical discoveries in 20th century Europe.Yet this brief, easy-to-read volume shows how they were underpinned by centuries of observations about the nature of reality from the great philosophies and faiths of humanity, from China to India to the Middle East.At each stage, the people involved found themselves saying: 'That's impossible! That makes no sense. And yet...'




Toys Or Physics?: Explaining Physics Through Toys


Book Description

Are you ready for a journey of discovery? Let's go!This eye-opening book will amaze young readers and spark their interest in physics. With full-colour illustrations and simple-to-read explanations, Toys or Physics? examines well-loved toys and games, and breaks down essential physics concepts through fun and play.This book is for three groups of people:This title is part of the set: Is it Science? (Set 1)




Einstein and the Quantum


Book Description

The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrödinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.




Six Impossible Things


Book Description

“An elegant and accessible” investigation of quantum mechanics for non-specialists—“highly recommended” for students of the sciences, sci-fi fans, and anyone interested in the strange world of quantum physics (Forbes) Rules of the quantum world seem to say that a cat can be both alive and dead at the same time and a particle can be in two places at once. And that particle is also a wave; everything in the quantum world can described in terms of waves—or entirely in terms of particles. These interpretations were all established by the end of the 1920s, by Erwin Schrödinger, Werner Heisenberg, Paul Dirac, and others. But no one has yet come up with a common sense explanation of what is going on. In this concise and engaging book, astrophysicist John Gribbin offers an overview of six of the leading interpretations of quantum mechanics. Gribbin calls his account “agnostic,” explaining that none of these interpretations is any better—or any worse—than any of the others. Gribbin presents the Copenhagen Interpretation, promoted by Niels Bohr and named by Heisenberg; the Pilot-Wave Interpretation, developed by Louis de Broglie; the Many Worlds Interpretation (termed “excess baggage” by Gribbin); the Decoherence Interpretation (“incoherent”); the Ensemble “Non-Interpretation”; and the Timeless Transactional Interpretation (which theorized waves going both forward and backward in time). All of these interpretations are crazy, Gribbin warns, and some are more crazy than others—but in the quantum world, being more crazy does not necessarily mean more wrong.




Quantum Non-Locality and Relativity


Book Description

The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell’s Theorem and its implication for the relativistic account of space and time Discusses Roderich Tumiulka’s explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell’s inequality. Discusses the "Free Will Theorem" of John Conway and Simon Kochen Introduces philosophers to the relevant physics and demonstrates how philosophical analysis can help inform physics




Atomic Physics


Book Description

This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimental basis of the subject, especially in the later chapters. It includes ample tutorial material (examples, illustrations, chapter summaries, graded problem sets).




The Dancing Wu Li Masters


Book Description

This is an account of the essential aspects of the new physics for those with little or no knowledge of mathematics or science. It describes current theories of quantum mechanics, Einstein's special and general theories of relativity and other speculations, alluding throughout to parallels with modern psychology and metaphorical abstractions to Buddhism and Taoism. The author has also written "The Seat of the Soul".




Quantum Mechanics and Gravity


Book Description

This book describes a paradigm change in modern physics from the philosophy and mathematical expression of the quantum theory to those of general relativity. The approach applies to all domains - from elementary particles to cosmology. The change is from the positivistic views in which atomism, nondeterminism and measurement are fundamental, to a holistic view in realism, wherein matter - electrons, galaxies, - are correlated modes of a single continuum, the universe. A field that unifies electromagnetism, gravity and inertia is demonstrated explicitly, with new predictions, in terms of quaternion and spinor field equations in a curved spacetime. Quantum mechanics emerges as a linear, flatspace approximation for the equations of inertia in general relativity.




The Odd Quantum


Book Description

An acclaimed physicist’s accessible yet rigorous introduction to quantum mechanics for nonspecialists This is a rare and much-needed book: a concise but comprehensive account of quantum mechanics for popular science readers written by a respected physicist. Sam Treiman—internationally renowned for his work in particle physics—makes quantum mechanics accessible to nonspecialists. Combining mastery of the material with clear, elegant prose and infectious enthusiasm, he conveys the substance, methods, and profound oddities of the field. Treiman begins with an overview of quantum mechanics. He sketches the early development of the field by Einstein, Bohr, Heisenberg, Schrödinger, and others, and he makes clear how the quantum outlook flies in the face of common sense. As he explains, the quantum world is intrinsically probabilistic. For example, a particle is not in general in some particular place at a given instant, nor does it have a definite momentum. According to the Heisenberg uncertainty principle, there is a limit to how well both location and momentum can be specified simultaneously. In addition, particles can move through barriers and otherwise move in regions of space that are forbidden by classical mechanics. If a particle has a choice of different paths, it pursues all of them at once. Particles display wave-like characteristics and waves show particle-like characteristics. Treiman pays special attention to the more fundamental wave outlook and its expression in quantum field theory. He deals here with the remarkable fact that all the particles of a given species are strictly identical, and with the unnerving fact that particles can be created and destroyed. As Treiman introduces us to these and other wonders, he also touches—without resolution—on some of the deep philosophical problems of quantum mechanics, notably how probabilities become facts. Weaving together impeccable science, engaging writing, and a talent for clear explanation honed over Treiman's distinguished career as a physicist and teacher, The Odd Quantum is a remarkable survey of a field that changed the course of modern scientific and philosophical thought.




A Project to Find the Fundamental Theory of Physics


Book Description

The Wolfram Physics Project is a bold effort to find the fundamental theory of physics. It combines new ideas with the latest research in physics, mathematics and computation in the push to achieve this ultimate goal of science. Written with Stephen Wolfram's characteristic expository flair, this book provides a unique opportunity to learn about a historic initiative in science right as it is happening. A Project to Find the Fundamental Theory of Physics includes an accessible introduction to the project as well as core technical exposition and rich, never-before-seen visualizations.