3D Anisotropic Mesh Adaptation for Reynolds Averaged Navier-Stokes Simulations


Book Description

The fast and reliable simulation of turbulent flow using Reynolds Averaged Navier Stokes (RANS) models is a major financial issue for many industries. With the increasing complexity of geometries and simulated flows, as well as requirements in terms of fidelity, the generation of appropriate meshes has become a key link in the chain of computation. We show in this thesis the ability of modern numerical schemes to simulate turbulent flows on fully unstructured meshes generated automatically using mesh adaptation methods. We present the implementation of different versions of the Spalart-Allmaras model as well as the numerical choices guaranteeing a sufficient robustness of the solver in order to not require a structured boundary layer. We then introduce the error analysis necessary to propose different error estimators for mesh optimization. This methodology is tested on various external aerodynamic and turbomachinery test cases and compared to traditional mesh generation methods. We show the ability of mesh adaptation methods to automatically generate optimal mesh sizes for RANS simulations on realistic and complex geometries.




Numerical Methods and Mesh Adaptation for Reliable Rans Simulations


Book Description

This thesis deals with the high-fidelity prediction of viscous turbulent flows modelized by the Reynolds-Averaged Navier-Stokes (RANS) equations. If mesh adaptation has been successfully applied to inviscid simulations like the sonic boom prediction or the blast propagation, demonstrating that these methods are also well-suited for 3D RANS simulations remains a challenge. This thesis addresses research issues that arise in this context, which are related to both numerical methods (flow solver) and mesh adaptation strategies. For the numerical methods, we have implemented a turbulence model in our in-house flow solver and carried out its verification & validation study. Accurate results were obtained for a representative set of test cases, including the drag prediction workshop. Additional developments have been done to improve the robustness and the convergence speed of the flow solver. They include the implementation of an implicit time integration and of a multigrid acceleration procedure. As regards mesh adaptation, we have coupled the adaptive process to multigrid in order to benefit from its convergence properties and thus improve the robustness while preventing losses of computational effort. We also have devised a parallel mesh generation algorithm. We are able to generate anisotropic adapted meshes containing around one billion elements in less than 20min on 120 cores. Finally, we introduced a procedure to automatically generate anisotropic adapted quasi-structured meshes in boundary layer regions.







Mesh Adaptation for Computational Fluid Dynamics, Volume 1


Book Description

Simulation technology, and computational fluid dynamics (CFD) in particular, is essential in the search for solutions to the modern challenges faced by humanity. Revolutions in CFD over the last decade include the use of unstructured meshes, permitting the modeling of any 3D geometry. New frontiers point to mesh adaptation, allowing not only seamless meshing (for the engineer) but also simulation certification for safer products and risk prediction. Mesh Adaptation for Computational Dynamics 1 is the first of two volumes and introduces basic methods such as feature-based and multiscale adaptation for steady models. Also covered is the continuous Riemannian metrics formulation which models the optimally adapted mesh problem into a pure partial differential statement. A number of mesh adaptative methods are defined based on a particular feature of the simulation solution. This book will be useful to anybody interested in mesh adaptation pertaining to CFD, especially researchers, teachers and students.




Numerical Geometry, Grid Generation and Scientific Computing


Book Description

The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year’s special focus is on Delaunay triangulations and their applications, celebrating the 130th birthday of Boris Delaunay. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.




Time-accurate Anisotropic Mesh Adaptation for Three-dimensional Moving Mesh Problems


Book Description

Time dependent simulations are still a challenge for industry, notably due to problems raised by moving boundaries, both in terms of CPU cost and accuracy. This thesis presents contributions to several aspects of simulations with moving meshes. A moving-mesh algorithm based on a large deformation time step and connectivity changes (swaps) is studied. An elasticity method and an Inverse Distance Weighted interpolation method are compared on many 3D examples, demonstrating the efficiency of the algorithm in handling large geometry displacement without remeshing. This algorithm is coupled with an Arbitrary-Lagrangian-Eulerian (ALE) solver, whose schemes and implementation in 3D are described in details. A linear interpolation scheme is used to handle swaps. Validation test cases showed that the use of swaps does not impact notably the accuracy of the solution, while several other complex 3D examples demonstrate the capabilities of the approach both with imposed motion and Fluid-Structure Interaction problems. Metric-based mesh adaptation has proved its efficiency in improving the accuracy of steady simulation at a reasonable cost. We consider the extension of these methods to unsteady problems, updating the previous fixed-point algorithm thanks to a new space-time error analysis based on the continuous mesh model. An efficient p-thread parallelization enables running 3D unsteady adaptative simulations with a new level of accuracy. This algorithm is extended to moving mesh problems, notably by correcting the optimal unsteady metric. Finally several 3D examples of adaptative moving mesh simulations are exhibited, that prove our concept by improving notably the accuracy of the solution for a reasonable time cost.




Mesh Adaptation for Computational Fluid Dynamics, Volume 2


Book Description

Simulation technology, and computational fluid dynamics (CFD) in particular, is essential in the search for solutions to the modern challenges faced by humanity. Revolutions in CFD over the last decade include the use of unstructured meshes, permitting the modeling of any 3D geometry. New frontiers point to mesh adaptation, allowing not only seamless meshing (for the engineer) but also simulation certification for safer products and risk prediction. Mesh Adaptation for Computational Dynamics 2 is the second of two volumes and introduces topics including optimal control formulation, minimizing a goal function, and extending the steady algorithm to unsteady physics. Also covered are multi-rate strategies, steady inviscid flows in aeronautics and an extension to viscous flows. This book will be useful to anybody interested in mesh adaptation pertaining to CFD, especially researchers, teachers and students.




Issues in Aerospace and Defense Research and Application: 2011 Edition


Book Description

Issues in Aerospace and Defense Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Aerospace and Defense Research and Application. The editors have built Issues in Aerospace and Defense Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Aerospace and Defense Research and Application in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Aerospace and Defense Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Mesh Adaptation for Computational Fluid Dynamics, Volume 1


Book Description

Simulation technology, and computational fluid dynamics (CFD) in particular, is essential in the search for solutions to the modern challenges faced by humanity. Revolutions in CFD over the last decade include the use of unstructured meshes, permitting the modeling of any 3D geometry. New frontiers point to mesh adaptation, allowing not only seamless meshing (for the engineer) but also simulation certification for safer products and risk prediction. Mesh Adaptation for Computational Dynamics 1 is the first of two volumes and introduces basic methods such as feature-based and multiscale adaptation for steady models. Also covered is the continuous Riemannian metrics formulation which models the optimally adapted mesh problem into a pure partial differential statement. A number of mesh adaptative methods are defined based on a particular feature of the simulation solution. This book will be useful to anybody interested in mesh adaptation pertaining to CFD, especially researchers, teachers and students.




A Three Dimensional Multigrid Reynolds-Averaged Navier-Stokes Solver for Unstructured Meshes


Book Description

A three-dimensional unstructured mesh Reynolds averaged Navier-Stokes solver is described. Turbulence is simulated using a single field-equation model. Computational overheads are minimized through the use of a single edge-based data-structure, and efficient multigrid solution technique, and the use of multi-tasking on shared memory multi-processors. The accuracy and efficiency of the code are evaluated by computing two-dimensional flows in three dimensions and comparing with results from a previously validated two-dimensional code which employs the same solution algorithm. The feasibility of computing three-dimensional flows on grids of several million points in less than two hours of wall clock time is demonstrated. Mavriplis, D. J. Unspecified Center NAS1-19480; RTOP 505-90-52-01...