Combinatorial Optimization and Applications


Book Description

The two-volume set LNCS 14461 and LNCS 14462 constitutes the refereed proceedings of the 17th International Conference on Combinatorial Optimization and Applications, COCOA 2023, held in Hawaii, HI, USA, during December 15–17, 2023. The 73 full papers included in the proceedings were carefully reviewed and selected from 117 submissions. They were organized in topical sections as follows: Part I: Optimization in graphs; scheduling; set-related optimization; applied optimization and algorithm; Graph planer and others; Part II: Modeling and algorithms; complexity and approximation; combinatorics and computing; optimization and algorithms; extreme graph and others; machine learning, blockchain and others.




Foundations of Software Science and Computation Structures


Book Description

This open access book constitutes the proceedings of the 26th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2023, which was held during April 22-27, 2023, in Paris, France, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023. The 26 regular papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems.




Deformation of Artinian Algebras and Jordan Type


Book Description

This volume contains the proceedings of the AMS-EMS-SMF Special Session on Deformations of Artinian Algebras and Jordan Type, held July 18?22, 2022, at the Universit‚ Grenoble Alpes, Grenoble, France. Articles included are a survey and open problems on deformations and relation to the Hilbert scheme; a survey of commuting nilpotent matrices and their Jordan type; and a survey of Specht ideals and their perfection in the two-rowed case. Other articles treat topics such as the Jordan type of local Artinian algebras, Waring decompositions of ternary forms, questions about Hessians, a geometric approach to Lefschetz properties, deformations of codimension two local Artin rings using Hilbert-Burch matrices, and parametrization of local Artinian algebras in codimension three. Each of the articles brings new results on the boundary of commutative algebra and algebraic geometry.




Kernelization


Book Description

A complete introduction to recent advances in preprocessing analysis, or kernelization, with extensive examples using a single data set.




Quantum Proofs


Book Description

Quantum Proofs provides an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, it discusses non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class QSZK, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*. Quantum Proofs is mainly intended for non-specialists having a basic background in complexity theory and quantum information. A typical reader may be a student or researcher in either area desiring to learn about the fundamentals of the (actively developing) theory of quantum interactive proofs.




Introduction to Property Testing


Book Description

An extensive and authoritative introduction to property testing, the study of super-fast algorithms for the structural analysis of large quantities of data in order to determine global properties. This book can be used both as a reference book and a textbook, and includes numerous exercises.




List Decoding of Error-Correcting Codes


Book Description

This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser. Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form.







Algorithmic Results in List Decoding


Book Description

Algorithmic Results in List Decoding introduces and motivates the problem of list decoding, and discusses the central algorithmic results of the subject, culminating with the recent results on achieving "list decoding capacity." The main technical focus is on giving a complete presentation of the recent algebraic results achieving list decoding capacity, while pointers or brief descriptions are provided for other works on list decoding. Algorithmic Results in List Decoding is intended for scholars and graduate students in the fields of theoretical computer science and information theory. The author concludes by posing some interesting open questions and suggests directions for future work.