The Compiler Design Handbook


Book Description

Today’s embedded devices and sensor networks are becoming more and more sophisticated, requiring more efficient and highly flexible compilers. Engineers are discovering that many of the compilers in use today are ill-suited to meet the demands of more advanced computer architectures. Updated to include the latest techniques, The Compiler Design Handbook, Second Edition offers a unique opportunity for designers and researchers to update their knowledge, refine their skills, and prepare for emerging innovations. The completely revised handbook includes 14 new chapters addressing topics such as worst case execution time estimation, garbage collection, and energy aware compilation. The editors take special care to consider the growing proliferation of embedded devices, as well as the need for efficient techniques to debug faulty code. New contributors provide additional insight to chapters on register allocation, software pipelining, instruction scheduling, and type systems. Written by top researchers and designers from around the world, The Compiler Design Handbook, Second Edition gives designers the opportunity to incorporate and develop innovative techniques for optimization and code generation.







Hybrid Systems: Computation and Control


Book Description

This book constitutes the refereed proceedings of the 9th International Workshop on Hybrid Systems: Computation and Control, HSCC 2006, held in Santa Barbara, CA, USA in March 2006. The 39 revised full papers presented together with the abstracts of 3 invited talks were carefully reviewed and selected from 79 submissions. Among the topics addressed are tools for analysis and verification, control and optimization, modeling, engineering applications, and emerging directions in programming language support and implementation. The papers focus on modeling, analysis, and implementation of dynamic and reactive systems involving both discrete and continuous behaviors.




Proceedings


Book Description







Model-Based Control of Networked Systems


Book Description

This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled. The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates. It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control. Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and design of model-based networked systems Parameter identification and adaptive stabilization of systems controlled over networks The MB-NCS approach to decentralized control of distributed systems Model-Based Control of Networked Systems will appeal to researchers, practitioners, and graduate students interested in the control of networked systems, distributed systems, and systems with limited feedback.