Fast Fluidization


Book Description

Over the last decade, circulating fluidization or fast fluidization has developed rapidly, superseding standard bubbling fluidization in many applications; for example, fast fluidization provides a better means forcontrolling emissions from the combustion of high-sulfur fuels and excels when used in boilers in steam plant and power stations. China initiated the study of fast fluidization in the early 1970s. Focusing on the substantial research cultivated in that country, with Kwauk at the leading edge, this latest volume in the Advances in Chemical Engineering Series is written in the context of the international state of the art and addresses some of the most vital issues surrounding this fluidization method."




Progress in Electrorheology


Book Description

This treatise is a compendium of refereed papers based on invited talks presented at the American Chemical Society Symposium on Electrorheological (ER) Materials and Fluids. ER fluids were first investigated 50+ years ago. These fluids, which change rheology when placed in an electric field, were recognized, from the beginning, for allowing an extremely efficient interface between electrical control and mechanical devices. Critical problems, however, existed with the initial fluids, which prevented them from serious consideration for large-scale applications. While over time some of the critical problems have been solved and activity in ER technology has increased, commercial success has remained elusive. A recent Department of Energy report concluded that a primary reason for the failure to commercialize this promising technology is due to a lack in understanding the physics and chemistry of how the materials work. The goal of the symposium was to address the issue of understanding how ER materials work and how they can be used. One of the outcomes of the symposium, which we hope is conveyed in this book, is a feeling that if the mechanism of ER is to be fully understood and improved, expertise from diverse fields must be applied to the problem.




Advances in Automation IV


Book Description

This book reports on innovative research and developments in automation. Spanning a wide range of disciplines, including communication engineering, power engineering, control engineering, instrumentation, signal processing and cybersecurity, it focuses on methods and findings aimed at improving the control and monitoring of industrial and manufacturing processes as well as safety. Based on the International Russian Automation Conference, held on September 4–10, 2022, in Sochi, Russia, the book provides academics and professionals with a timely overview of and extensive information on the state of the art in the field of automation and control systems and fosters new ideas and collaborations between groups in different countries.




Handbook of Fluidization and Fluid-Particle Systems


Book Description

This reference details particle characterization, dynamics, manufacturing, handling, and processing for the employment of multiphase reactors, as well as procedures in reactor scale-up and design for applications in the chemical, mineral, petroleum, power, cement and pharmaceuticals industries. The authors discuss flow through fixed beds, elutriation and entrainment, gas distributor and plenum design in fluidized beds, effect of internal tubes and baffles, general approaches to reactor design, applications for gasifiers and combustors, dilute phase pneumatic conveying, and applications for chemical production and processing. This is a valuable guide for chemists and engineers to use in their day-to-day work.










Handbook of Fluid Dynamics


Book Description

Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.







Multiphase Flow Handbook


Book Description

The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.




Fundamentals of Fluid-Solid Interactions


Book Description

This book focuses on the computational and theoretical approaches to the coupling of fluid mechanics and solids mechanics. In particular, nonlinear dynamical systems are introduced to the handling of complex fluid-solid interaction systems, For the past few decades, many terminologies have been introduced to this field, namely, flow-induced vibration, aeroelasticity, hydroelasticity, fluid-structure interaction, fluid-solid interaction, and more recently multi-physics problems. Moreover, engineering applications are distributed within different disciplines, such as nuclear, civil, aerospace, ocean, chemical, electrical, and mechanical engineering. Regrettably, while each particular subject is by itself very extensive, it has been difficult for a single book to cover in a reasonable depth and in the mean time to connect various topics. In light of the current multidisciplinary research need in nanotechnology and bioengineering, there is an urgent need for books to provide such a linkage and to lay a foundation for more specialized fields. - Interdisciplinary across all types of engineering - Comprehensive study of fluid-solid interaction - Discusses complex system dynamics derived from interactive systems - Provides mathematic modeling of biological systems