Mars Sample Return Mission Utilizing In-Situ Propellant Production


Book Description

This report presents the results of a study examining the potential of in-situ propellant production (ISPP) on Mars to aid in achieving a low cost Mars Sample Return (MSR) mission. Two versions of such a mission were examined: a baseline version employing a dual string spacecraft, and a light weight version employing single string architecture with selective redundancy. Both systems employed light weight avionics currently being developed by Lockheed Martin, Jet Propulsion Lab and elsewhere in the aerospace community, both used a new concept for a simple, light weight parachuteless sample return capsule, both used a slightly modified version of the Mars Surveyor lander currently under development at Lockheed Martin for flight in 1998, and both used a combination of the Sabatier-electrolysis and reverse water gas shift ISPP systems to produce methane/oxygen propellant on Mars by combining a small quantity of imported hydrogen with the Martian CO2 atmosphere. It was found that the baseline mission could be launched on a Delta 7925 and return a 0.5 kg sample with 82 percent mission launch margin;over and beyond subsystem allocated contingency masses . The lightweight version could be launched on a Mid-Lite vehicle and return a 0.25 kg sample with 11 percent launch margin, over and above subsystem contingency mass allocations. Zubrin, Robert and Price, Steve Unspecified Center...




Project Hyreus


Book Description

Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch. Abrego, Anita and Bair, Chris and Hink, Anthony and Kim, Jae and Koch, Amber and Kruse, Ross and Ngo, Dung and Nicholson, Heather and Nill, Laurie and Perras, Craig Unspecified Center NASA-CR-197189, NAS 1.26:197189 NASW-4435...




Human Missions to Mars


Book Description

In this book, Donald Rapp looks at human missions to Mars from a technological perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out. This third edition provides extensive updating and additions to the last edition, including new sections, and many new figures and tables, and references.







Microreaction Technology: Industrial Prospects


Book Description

Miniaturization has cost and time-saving advantages for numerous applications in chemistry, pharmacy, medicine and biotechnology. Additionally, microreaction technology offers new solutions for the automobile industry and environmental technology, e.g. fuel cells, or mobile sensor systems for on-the-spot analysis. Therefore, the 3rd International Conference on Microreaction Technology - IMRET 3 is an important forum for creating awareness of the wide variety of the new trends in this up-and-coming discipline.










The Conquest of Space


Book Description

Although its roots lie in early rocket technologies and the international tensions that followed World War II, the space race began after the Soviet launch of Sputnik 1 on October 4, 1957. The space race became an important part of the cultural and technological rivalry between the USSR and the United States during the Cold War. Modern space exploration is reaching unbelievable areas. Mars is the focal point of space exploration. In the long term, there are tentative plans for manned orbital and landing missions to the Moon and Mars, establishing scientific outposts that will then give way to permanent and self-sufficient settlements. Additional exploration will potentially involve expeditions and settlements on other planets and their moons, as well as the establishment of mining and fueling outposts, particularly in the asteroid belt. Physical exploration outside the solar system will be robotic in the foreseeable future.







LPI Contribution


Book Description