A Celebration of John F. Nash Jr.


Book Description

This collection celebrates the pathbreaking work in game theory and mathematics of John F. Nash Jr., winner of the 1994 Nobel Prize in Economics. Nash's analysis of equilibria in the theory of non-cooperative games has had a major impact on modern economic theory. This book, also published as volume 81 of the Duke Mathematical Journal, includes an important, but previously unpublished paper by Nash; the proceedings of the Nobel seminar held in Stockholm on December 8, 1994 in his honor; and papers by distinguished mathematicians and economists written in response to and in honor of Nash's pioneering contributions to those fields. In 1950, when he was 22 years old, Nash presented his key idea--the Nash equilibrium--in the Ph.D. thesis he submitted to the Mathematics Department at Princeton University. In that paper, he defined a new concept of equilibrium and used methods from topology to prove the existence of an equilibrium point for n-person, finite, non-cooperative games, that is, for games in which the number of possible strategies are limited, no communication is allowed between the players, and n represents the number of players. The Nash equilibrium point is reached when none of the players can improve their position by changing strategies. By taking into account situations involving more than two players, specifically the general n-player game, Nash built significantly on the previous work of John Von Neumann and Oskar Morgenstern. Contributors. Abbas Bahri, Eric A. Carlen, Ennio De Giorgi, Charles Fefferman, Srihari Govidan, John C. Harsanyi, H. Hoffer, Carlos E. Kenig, S. Klainerman, Harold F. Kuhn, Michael Loss, William F. Lucas, M. Machedon, Roger B. Myerson, Raghavan Narasimhan, John F. Nash Jr., Louis Nirenberg, Jill Pipher, Zeév Rudnick, Peter Sarnak, Michael Shub, Steve Smale, Robert Wilson, K. Wysocki, E. Zehnder




The Essential John Nash


Book Description

When John Nash won the Nobel prize in economics in 1994, many people were surprised to learn that he was alive and well. Since then, Sylvia Nasar's celebrated biography A Beautiful Mind, the basis of a new major motion picture, has revealed the man. The Essential John Nash reveals his work--in his own words. This book presents, for the first time, the full range of Nash's diverse contributions not only to game theory, for which he received the Nobel, but to pure mathematics--from Riemannian geometry and partial differential equations--in which he commands even greater acclaim among academics. Included are nine of Nash's most influential papers, most of them written over the decade beginning in 1949. From 1959 until his astonishing remission three decades later, the man behind the concepts "Nash equilibrium" and "Nash bargaining"--concepts that today pervade not only economics but nuclear strategy and contract talks in major league sports--had lived in the shadow of a condition diagnosed as paranoid schizophrenia. In the introduction to this book, Nasar recounts how Nash had, by the age of thirty, gone from being a wunderkind at Princeton and a rising mathematical star at MIT to the depths of mental illness. In his preface, Harold Kuhn offers personal insights on his longtime friend and colleague; and in introductions to several of Nash's papers, he provides scholarly context. In an afterword, Nash describes his current work, and he discusses an error in one of his papers. A photo essay chronicles Nash's career from his student days in Princeton to the present. Also included are Nash's Nobel citation and autobiography. The Essential John Nash makes it plain why one of Nash's colleagues termed his style of intellectual inquiry as "like lightning striking." All those inspired by Nash's dazzling ideas will welcome this unprecedented opportunity to trace these ideas back to the exceptional mind they came from.




Open Problems in Mathematics


Book Description

The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.




Essays on Game Theory


Book Description

'This short volume is very welcome . . . Most importantly, on pages 32-33, the volume reprints as an appendix to the journal article based on Nash's Princeton doctoral dissertation on non-cooperative games a section of the thesis on "motivation and interpretation" that was omitted from the article. An editorial note remarks mildly that "The missing section is of considerable interest". This section, not available in any other published source, makes the present volume indispensable for research libraries . . . Nash's Essays on Game Theory, dating from his years as a Princeton graduate student . . . has a lasting impact on economics and related fields unmatched by any series of articles written in such a brief time . . . To economists, his name will always bring to mind his game theory papers of the early 1950s. It is good to have these conveniently reprinted in this volume.' - Robert W. Dimand, The Economic Journal 'The news that John Nash was to share the 1994 Nobel Prize for Economics with John Harsanyi and Reinhard Selten was doubly welcome. It signalled not only that the brilliant achievements of his youth were to be recognized in a manner consistent with their significance, but that the long illness that clouded his later years had fallen into remission. I hope that this collection of his economic papers will serve as another reminder that John Nash has rejoined the intellectual community to which he has contributed so much.' - From the introduction by Ken Binmore Essays on Game Theory is a unique collection of seven of John Nash's essays which highlight his pioneering contribution to game theory in economics. Featuring a comprehensive introduction by Ken Binmore which explains and summarizes John Nash's achievements in the field of non-cooperative and cooperative game theory, this book will be an indispensable reference for scholars and will be welcomed by those with an interest in game theory and its applications to the social sciences.




Arc Schemes And Singularities


Book Description

This title introduces the theory of arc schemes in algebraic geometry and singularity theory, with special emphasis on recent developments around the Nash problem for surfaces. The main challenges are to understand the global and local structure of arc schemes, and how they relate to the nature of the singularities on the variety. Since the arc scheme is an infinite dimensional object, new tools need to be developed to give a precise meaning to the notion of a singular point of the arc scheme.Other related topics are also explored, including motivic integration and dual intersection complexes of resolutions of singularities. Written by leading international experts, it offers a broad overview of different applications of arc schemes in algebraic geometry, singularity theory and representation theory.




Model Theory, Algebra, and Geometry


Book Description

Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.




Hawaii's Story


Book Description




Motivic Integration


Book Description

This monograph focuses on the geometric theory of motivic integration, which takes its values in the Grothendieck ring of varieties. This theory is rooted in a groundbreaking idea of Kontsevich and was further developed by Denef & Loeser and Sebag. It is presented in the context of formal schemes over a discrete valuation ring, without any restriction on the residue characteristic. The text first discusses the main features of the Grothendieck ring of varieties, arc schemes, and Greenberg schemes. It then moves on to motivic integration and its applications to birational geometry and non-Archimedean geometry. Also included in the work is a prologue on p-adic analytic manifolds, which served as a model for motivic integration. With its extensive discussion of preliminaries and applications, this book is an ideal resource for graduate students of algebraic geometry and researchers of motivic integration. It will also serve as a motivation for more recent and sophisticated theories that have been developed since.




The Abel Prize 2013-2017


Book Description

The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.




Mathematicians of the World, Unite!


Book Description

This vividly illustrated history of the International Congress of Mathematicians- a meeting of mathematicians from around the world held roughly every four years- acts as a visual history of the 25 congresses held between 1897 and 2006, as well as a story of changes in the culture of mathematics over the past century. Because the congress is an int