A Concise Introduction to Languages and Machines


Book Description

A Concise Introduction to Languages, Machines and Logic provides an accessible introduction to three key topics within computer science: formal languages, abstract machines and formal logic. Written in an easy-to-read, informal style, this textbook assumes only a basic knowledge of programming on the part of the reader. The approach is deliberately non-mathematical, and features: - Clear explanations of formal notation and jargon, - Extensive use of examples to illustrate algorithms and proofs, - Pictorial representations of key concepts, - Chapter opening overviews providing an introduction and guidance to each topic, - End-of-chapter exercises and solutions, - Offers an intuitive approach to the topics. This reader-friendly textbook has been written with undergraduates in mind and will be suitable for use on course covering formal languages, formal logic, computability and automata theory. It will also make an excellent supplementary text for courses on algorithm complexity and compilers.




An Introduction to Formal Languages and Machine Computation


Book Description

This book provides a concise and modern introduction to Formal Languages and Machine Computation, a group of disparate topics in the theory of computation, which includes formal languages, automata theory, turing machines, computability, complexity, number-theoretic computation, public-key cryptography, and some new models of computation, such as quantum and biological computation. As the theory of computation is a subject based on mathematics, a thorough introduction to a number of relevant mathematical topics, including mathematical logic, set theory, graph theory, modern abstract algebra, and particularly number theory, is given in the first chapter of the book. The book can be used either as a textbook for an undergraduate course, for a first-year graduate course, or as a basic reference in the field.




Languages and Machines


Book Description




An Introduction to Formal Languages and Automata


Book Description

An Introduction to Formal Languages & Automata provides an excellent presentation of the material that is essential to an introductory theory of computation course. The text was designed to familiarize students with the foundations & principles of computer science & to strengthen the students' ability to carry out formal & rigorous mathematical argument. Employing a problem-solving approach, the text provides students insight into the course material by stressing intuitive motivation & illustration of ideas through straightforward explanations & solid mathematical proofs. By emphasizing learning through problem solving, students learn the material primarily through problem-type illustrative examples that show the motivation behind the concepts, as well as their connection to the theorems & definitions.




Introduction to Languages and the Theory of Computation


Book Description

Provides an introduction to the theory of computation that emphasizes formal languages, automata and abstract models of computation, and computability. This book also includes an introduction to computational complexity and NP-completeness.




Programming Languages and Operational Semantics


Book Description

This book provides an introduction to the essential concepts in programming languages, using operational semantics techniques. It presents alternative programming language paradigms and gives an in-depth analysis of the most significant constructs in modern imperative, functional and logic programming languages. The book is designed to accompany lectures on programming language design for undergraduate students. Each chapter includes exercises which provide the opportunity to apply the concepts and techniques presented.




Introduction to Automata Theory, Formal Languages and Computation


Book Description

Formal languages and automata theory is the study of abstract machines and how these can be used for solving problems. The book has a simple and exhaustive approach to topics like automata theory, formal languages and theory of computation. These descriptions are followed by numerous relevant examples related to the topic. A brief introductory chapter on compilers explaining its relation to theory of computation is also given.




Principles of Programming Languages


Book Description

By introducing the principles of programming languages, using the Java language as a support, Gilles Dowek provides the necessary fundamentals of this language as a first objective. It is important to realise that knowledge of a single programming language is not really enough. To be a good programmer, you should be familiar with several languages and be able to learn new ones. In order to do this, you’ll need to understand universal concepts, such as functions or cells, which exist in one form or another in all programming languages. The most effective way to understand these universal concepts is to compare two or more languages. In this book, the author has chosen Caml and C. To understand the principles of programming languages, it is also important to learn how to precisely define the meaning of a program, and tools for doing so are discussed. Finally, there is coverage of basic algorithms for lists and trees. Written for students, this book presents what all scientists and engineers should know about programming languages.




Introduction to Formal Languages, Automata Theory and Computation


Book Description

Introduction to Formal Languages, Automata Theory and Computation presents the theoretical concepts in a concise and clear manner, with an in-depth coverage of formal grammar and basic automata types. The book also examines the underlying theory and principles of computation and is highly suitable to the undergraduate courses in computer science and information technology. An overview of the recent trends in the field and applications are introduced at the appropriate places to stimulate the interest of active learners.




Introduction to the Theory of Computation


Book Description

Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.