A Course in Mathematical Methods for Physicists


Book Description

Based on the author's junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-u




A Short Course in Mathematical Methods with Maple


Book Description

This unique book provides a streamlined, self-contained and modern text for a one-semester mathematical methods course with an emphasis on concepts important from the application point of view. Part I of this book follows the ?paper and pencil? presentation of mathematical methods that emphasizes fundamental understanding and geometrical intuition. In addition to a complete list of standard subjects, it introduces important, contemporary topics like nonlinear differential equations, chaos and solitons. Part II employs the Maple software to cover the same topics as in Part I in a computer oriented approach to instruction. Using Maple liberates students from laborious tasks while helping them to concentrate entirely on concepts and on better visualizing the mathematical content. The focus of the text is on key ideas and basic technical and geometric insights presented in a way that closely reflects how physicists and engineers actually think about mathematics.




Mathematical Methods


Book Description

Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.




A Course in Modern Mathematical Physics


Book Description

This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.




Mathematical Methods and Models for Economists


Book Description

A textbook for a first-year PhD course in mathematics for economists and a reference for graduate students in economics.




Basic Training in Mathematics


Book Description

Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.




Mathematical Techniques


Book Description

All students of engineering, science, and mathematics take courses on mathematical techniques or `methods', and large numbers of these students are insecure in their mathematical grounding. This book offers a course in mathematical methods for students in the first stages of a science or engineering degree. Its particular intention is to cover the range of topics typically required, while providing for students whose mathematical background is minimal. The topics covered are: * Analytic geometry, vector algebra, vector fields (div and curl), differentiation, and integration. * Complex numbers, matrix operations, and linear systems of equations. * Differential equations and first-order linear systems, functions of more than one variable, double integrals, and line integrals. * Laplace transforms and Fourier series and Fourier transforms. * Probability and statistics. The earlier part of this list consists largely of what is thought pre-university material. However, many science students have not studied mathematics to this level, and among those that have the content is frequently only patchily understood. Mathematical Techniques begins at an elementary level but proceeds to give more advanced material with a minimum of manipulative complication. Most of the concepts can be explained using quite simple examples, and to aid understanding a large number of fully worked examples is included. As far as is possible chapter topics are dealt with in a self-contained way so that a student only needing to master certain techniques can omit others without trouble. The widely illustrated text also includes simple numerical processes which lead to examples and projects for computation, and a large number of exercises (with answers) is included to reinforce understanding.




Mathematical Methods for Scientists and Engineers


Book Description

"Intended for upper-level undergraduate and graduate courses in chemistry, physics, math and engineering, this book will also become a must-have for the personal library of all advanced students in the physical sciences. Comprised of more than 2000 problems and 700 worked examples that detail every single step, this text is exceptionally well adapted for self study as well as for course use."--From publisher description.




A Course in Mathematical Biology


Book Description

This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.




Mathematical Methods in Physics and Engineering


Book Description

Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For this second revised edition, Professor Dettman included a new section on generalized functions to help explain the use of the Dirac delta function in connection with Green's functions. In addition, a new approach to series solutions of ordinary differential equations has made the treatment independent of complex variable theory. This means that the first six chapters can be grasped without prior knowledge of complex variables. However, since Chapter 8 depends heavily on analytic functions of a complex variable, a new Chapter 7 on analytic function theory has been written.