Principles of Mathematics Book 1 Set


Book Description

Katherine Loop has done the remarkable! She has written a solid math course with a truly Biblical worldview. This course goes way beyond the same old Christian math course that teaches math with a few Scriptures sprinkled in and maybe some church-based word problems. This course truly transforms the way we see math. Katherine makes the argument that math is not a neutral subject as most have come to believe. She carefully lays the foundation of how math points to our Creator, the God of the Bible. The nature of God, His Creation, and even the Gospel itself is seen through the study of math. Katherine does a marvelous job of revealing His Glory in this one-of-a-kind math course. Katherine Loop's Principles of Mathematics Biblical Worldview Curriculum is a first of its kind. It takes math to a whole new level students and parents are going to love. It is a guaranteed faith grower!




A Foundation Course in Mathematics


Book Description

Written in a conversational style to impart critical and analytical thinking which will be beneficial for students of any discipline. It also gives emphasis on problem solving and proof writing skills, key aspects of learning mathematics.




Principles of Mathematics Book 1 Teacher Guide


Book Description

Teacher Guide for Book 1 of the Principles of Mathematics - Biblical Worldview Curriculum for junior high! Math is a real-life tool that points us to God and helps us explore His creation, yet it often comes across as dry facts and meaningless rules. Here at last is a curriculum that has a biblical worldview integrated throughout the text and problems, not just added as an afterthought. The resources in the Teacher Guide will help students master and apply the skills learned in the Student Textbook. What does this Teacher Guide include? Worksheets, Quizzes, and Tests: These perforated, three-hole punched pages help provide practice on the principles taught in the main student textbook.Answer Keys: The answers are included for the worksheets, quizzes, and tests found in this Teacher Guide.Schedule: A suggested calendar schedule is provided for completing the material in one year, though this can be adapted to meet individual student needs. There is also an accelerated schedule for completing the material in one semester. Are there any prerequisites for this course? This curriculum is aimed at grades 6-8, fitting into most math approaches the year or two years prior to starting high school algebra. If following traditional grade levels, Book 1 should be completed in grade 6 or 7, and Book 2 in grade 7 or 8. In Book 1 students should have a basic knowledge of arithmetic (basic arithmetic will be reviewed, but at a fast pace and while teaching problem-solving skills and a biblical worldview of math) and sufficient mental development to think through the concepts and examples given. Typically, anyone in sixth grade or higher should be prepared to begin. The focus of the course is actually learning math for life, not simply preparing to pass a test.




A Course of Modern Analysis


Book Description

Historic text by two great mathematicians consists of two parts, The Processes of Analysis and The Transcendental Functions. Geared toward students of analysis and historians of mathematics. 1920 third edition.




A Course in Advanced Calculus


Book Description

This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, and more. Carefully chosen problems appear at the end of each chapter, and this new edition features an additional appendix of tips and solutions for selected problems.




A Mathematics Course for Political and Social Research


Book Description

Political science and sociology increasingly rely on mathematical modeling and sophisticated data analysis, and many graduate programs in these fields now require students to take a "math camp" or a semester-long or yearlong course to acquire the necessary skills. Available textbooks are written for mathematics or economics majors, and fail to convey to students of political science and sociology the reasons for learning often-abstract mathematical concepts. A Mathematics Course for Political and Social Research fills this gap, providing both a primer for math novices in the social sciences and a handy reference for seasoned researchers. The book begins with the fundamental building blocks of mathematics and basic algebra, then goes on to cover essential subjects such as calculus in one and more than one variable, including optimization, constrained optimization, and implicit functions; linear algebra, including Markov chains and eigenvectors; and probability. It describes the intermediate steps most other textbooks leave out, features numerous exercises throughout, and grounds all concepts by illustrating their use and importance in political science and sociology. Uniquely designed and ideal for students and researchers in political science and sociology Uses practical examples from political science and sociology Features "Why Do I Care?" sections that explain why concepts are useful Includes numerous exercises Complete online solutions manual (available only to professors, email david.siegel at duke.edu, subject line "Solution Set") Selected solutions available online to students




A Refresher Course in Mathematics


Book Description

Readers wishing to extend their mathematical skills will find this volume a practical companion. Easy-to-follow explanations cover fractions, decimals, square roots, metric system, algebra, more. 195 figures. 1943 edition.




Outline Course of Pure Mathematics


Book Description

Outline Course of Pure Mathematics presents a unified treatment of the algebra, geometry, and calculus that are considered fundamental for the foundation of undergraduate mathematics. This book discusses several topics, including elementary treatments of the real number system, simple harmonic motion, Hooke's law, parabolic motion under gravity, sequences and series, polynomials, binomial theorem, and theory of probability. Organized into 23 chapters, this book begins with an overview of the fundamental concepts of differential and integral calculus, which are complementary processes for solving problems of the physical world. This text then explains the concept of the inverse of a function that is a natural complement of the function concept and introduces a convenient notation. Other chapters illustrate the concepts of continuity and discontinuity at the origin. This book discusses as well the significance of logarithm and exponential functions in scientific and technological contexts. This book is a valuable resource for undergraduates and advanced secondary school students.




A Course on Group Theory


Book Description

Text for advanced courses in group theory focuses on finite groups, with emphasis on group actions. Explores normal and arithmetical structures of groups as well as applications. 679 exercises. 1978 edition.




Sports Math


Book Description

Can you really keep your eye on the ball? How is massive data collection changing sports? Sports science courses are growing in popularity. The author’s course at Roanoke College is a mix of physics, physiology, mathematics, and statistics. Many students of both genders find it exciting to think about sports. Sports problems are easy to create and state, even for students who do not live sports 24/7. Sports are part of their culture and knowledge base, and the opportunity to be an expert on some area of sports is invigorating. This should be the primary reason for the growth of mathematics of sports courses: the topic provides intrinsic motivation for students to do their best work. From the Author: "The topics covered in Sports Science and Sports Analytics courses vary widely. To use a golfing analogy, writing a book like this is like hitting a drive at a driving range; there are many directions you can go without going out of bounds. At the driving range, I pick out a small target to focus on, and that is what I have done here. I have chosen a sample of topics I find very interesting. Ideally, users of this book will have enough to choose from to suit whichever version of a sports course is being run." "The book is very appealing to teach from as well as to learn from. Students seem to have a growing interest in ways to apply traditionally different areas to solve problems. This, coupled with an enthusiasm for sports, makes Dr. Minton’s book appealing to me."—Kevin Hutson, Furman University