A Course of Philosophy and Mathematics


Book Description

Intro -- Contents -- Prolegomena by Giuliano di Bernardo -- Preface -- The Scope and the Structure of this Project -- Acknowledgments -- Chapter 1 -- Philosophy, Science, and The Dialectic of Rational Dynamicity -- 1.1. The Meaning of Philosophy and Preliminary Concepts -- 1.2. The Abstract Study of a Being -- 1.2.1. Epistemological Presuppositions -- 1.2.2. The Significance and the Presence of a Being -- 1.2.3. The Knowledge of a Being -- Structuralism in Physics -- Newton's Three Laws of Kinematics -- Newton's Law of Universal Gravitation -- Conservation of Mass and Energy -- Laws of Thermodynamics -- Electrostatic Laws -- Quantum Mechanics -- Structuralism in Biology -- Structuralism in Linguistics -- Philosophical Structuralism and Hermeneutics -- 1.2.4. The Modes of Being -- 1.3. The Dialectic of Rational Dynamicity -- 1.3.1. Dynamized Time -- 1.3.2. Dynamized Space and the Problem of the Extension of the Quantum Formalism -- 1.3.3. Consciousness, the World, and the Dialectic of Rational Dynamicity -- 1.3.4. Matter, Life, and Consciousness -- Chapter 2 -- Foundations of Mathematical Analysis and Analytic Geometry -- 2.1. Sets, Relations, and Groups -- 2.1.2. Basic Operations on Sets -- Applications of Set Theory to Probability Theory -- 2.1.3. Relations -- 2.1.4. Groups -- 2.2. Number Systems, Algebra, and Geometry -- 2.2.1. Axiomatic Number Theory -- The System of Natural Numbers -- Principle of Mathematical Induction -- Recursion -- Properties of the System of Natural Numbers -- Enumeration -- Order in N and Ordinal Numbers -- Division -- 2.2.2. The Set of Integral Numbers -- 2.2.3. The Set of Rational Numbers -- 2.2.4. The Set of Real Numbers -- Dedekind Algebra -- R as a Field -- The Absolute Value of a Real Number -- Exponentiation and Logarithm -- Properties of the System of the Real Numbers.




Philosophy of Mathematics


Book Description

The philosophy of mathematics is an exciting subject. Philosophy of Mathematics: Classic and Contemporary Studies explores the foundations of mathematical thought. The aim of this book is to encourage young mathematicians to think about the philosophical issues behind fundamental concepts and about different views on mathematical objects and mathematical knowledge. With this new approach, the author rekindles an interest in philosophical subjects surrounding the foundations of mathematics. He offers the mathematical motivations behind the topics under debate. He introduces various philosophical positions ranging from the classic views to more contemporary ones, including subjects which are more engaged with mathematical logic. Most books on philosophy of mathematics have little to no focus on the effects of philosophical views on mathematical practice, and no concern on giving crucial mathematical results and their philosophical relevance, consequences, reasons, etc. This book fills this gap. The book can be used as a textbook for a one-semester or even one-year course on philosophy of mathematics. "Other textbooks on the philosophy of mathematics are aimed at philosophers. This book is aimed at mathematicians. Since the author is a mathematician, it is a valuable addition to the literature." - Mark Balaguer, California State University, Los Angeles "There are not many such texts available for mathematics students. I applaud efforts to foster the dialogue between mathematics and philosophy." - Michele Friend, George Washington University and CNRS, Lille, France




An Introduction to the Philosophy of Mathematics


Book Description

A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.




Philosophy of Mathematics


Book Description

The philosophy of mathematics plays a vital role in the mature philosophy of Charles S. Peirce. Peirce received rigorous mathematical training from his father and his philosophy carries on in decidedly mathematical and symbolic veins. For Peirce, math was a philosophical tool and many of his most productive ideas rest firmly on the foundation of mathematical principles. This volume collects Peirce's most important writings on the subject, many appearing in print for the first time. Peirce's determination to understand matter, the cosmos, and "the grand design" of the universe remain relevant for contemporary students of science, technology, and symbolic logic.




Mathematics: A Concise History and Philosophy


Book Description

This is a concise introductory textbook for a one-semester (40-class) course in the history and philosophy of mathematics. It is written for mathemat ics majors, philosophy students, history of science students, and (future) secondary school mathematics teachers. The only prerequisite is a solid command of precalculus mathematics. On the one hand, this book is designed to help mathematics majors ac quire a philosophical and cultural understanding of their subject by means of doing actual mathematical problems from different eras. On the other hand, it is designed to help philosophy, history, and education students come to a deeper understanding of the mathematical side of culture by means of writing short essays. The way I myself teach the material, stu dents are given a choice between mathematical assignments, and more his torical or philosophical assignments. (Some sample assignments and tests are found in an appendix to this book. ) This book differs from standard textbooks in several ways. First, it is shorter, and thus more accessible to students who have trouble coping with vast amounts of reading. Second, there are many detailed explanations of the important mathematical procedures actually used by famous mathe maticians, giving more mathematically talented students a greater oppor tunity to learn the history and philosophy by way of problem solving.




Lectures on the Philosophy of Mathematics


Book Description

An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.




Philosophy of Mathematics


Book Description

A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.




Philosophy of Mathematics


Book Description

The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.




Philosophy of Mathematics and Deductive Structure in Euclid's Elements


Book Description

A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.




Towards a Philosophy of Real Mathematics


Book Description

In this ambitious study, David Corfield attacks the widely held view that it is the nature of mathematical knowledge which has shaped the way in which mathematics is treated philosophically and claims that contingent factors have brought us to the present thematically limited discipline. Illustrating his discussion with a wealth of examples, he sets out a variety of approaches to new thinking about the philosophy of mathematics, ranging from an exploration of whether computers producing mathematical proofs or conjectures are doing real mathematics, to the use of analogy, the prospects for a Bayesian confirmation theory, the notion of a mathematical research programme and the ways in which new concepts are justified. His inspiring book challenges both philosophers and mathematicians to develop the broadest and richest philosophical resources for work in their disciplines and points clearly to the ways in which this can be done.