High-Efficiency Deep Grinding


Book Description

A book which describes and discusses the technological requirements and theoretical principles of high-efficiency deep grinding. The role of machine settings and their influence on the process is examined and explained. The techniques and findings presented here are based on experience gained in a wide range of industrial and research projects.













Temperatures in High Efficiency Deep Grinding


Book Description

This research considers the temperatures generated in the workpiece during profile and cylindrical traverse grinding in the High Efficiency Deep Grinding (HEDG) regime. The HEDG regime takes large depths of cut at high wheel and workpiece speeds to create a highly efficient material removal process. This aggressive processing generates high temperatures in the contact zone between the wheel and workpiece. However, the beneficial contact angle and the rapid removal of the heated wheel? workpiece contact zone results in low temperatures in the finished surface. Temperatures in the ground surface can be predicted with knowledge of the specific grinding energy and the grinding parameters used. Specific grinding energies recorded at high specific material removal rates demonstrated a constant value of specific grinding energy dependent on cutting and contact conditions, improving accuracy of the predictive model. This was combined with a new approach to burn threshold modelling, which demonstrated an improved division of damaged and undamaged surfaces. Cutting and contact conditions in the grinding profile vary dependent on their position. This thesis shows how temperatures vary with location and estimates the partitioning of the heat flux to the regions of the grinding profile. This suggested a constant partitioning of energy to each of the three surfaces considered independently of specific material removal rates. Further a potential link was shown between the surface and the sidewall of the grinding profile, which allows temperatures in a secondary surface to be predicted given knowledge of that in the primary. Finally, the work has demonstrated the feasibility of the Superabrasive Turning process. Using small values of feed per turn and high workpiece feedrates promoted high values of removal rate with low depths of thermal penetration in the as ground surface. Thus the process has become viable for high speed cylindrical traverse grinding.




Modern Grinding Technology and Systems


Book Description

This specialist edition features key innovations in the science and engineering of new grinding processes, abrasives, tools, machines, and systems for a range of important industrial applications. Topics written by invited, internationally recognized authors review the advances and present results of research over a range of well-known grinding processes. A significant introductory review chapter explores innovations to achieve high productivity and very high precision in grinding. The reviewed applications range from grinding systems for very large lenses and reflectors, through to medium size grinding machine processes, and down to grinding very small components used in MEMS . Early research chapters explore the influence of grinding wheel topography on surface integrity and wheel wear. A novel chapter on abrasive processes also addresses the finishing of parts produced by additive manufacturing through mass finishing. Materials to be ground range from conventional engineering steels to aerospace materials, ceramics, and composites. The research findings highlight important new results for avoiding material sub-surface damage. The papers compiled in this book include references to many source publications which will be found invaluable for further research, such as new features introduced into control systems to improve process efficiency. The papers also reflect significant improvements and research findings relating to many aspects of grinding processes, including machines, materials, abrasives, wheel preparation, coolants, lubricants, and fluid delivery. Finally, a definitive chapter summarizes the optimal settings for high precision and the achievement of centerless grinding stability.







Temperatures in High Efficiency Deep Grinding


Book Description

This research considers the temperatures generated in the workpiece during profile and cylindrical traverse grinding in the High Efficiency Deep Grinding (HEDG) regime. The HEDG regime takes large depths of cut at high wheel and workpiece speeds to create a highly efficient material removal process. This aggressive processing generates high temperatures in the contact zone between the wheel and workpiece. However, the beneficial contact angle and the rapid removal of the heated wheel - workpiece contact zone results in low temperatures in the finished surface. Temperatures in the ground surface can be predicted with knowledge of the specific grinding energy and the grinding parameters used. Specific grinding energies recorded at high specific material removal rates demonstrated a constant value of specific grinding energy dependent on cutting and contact conditions, improving accuracy of the predictive model. This was combined with a new approach to burn threshold modelling, which demonstrated an improved division of damaged and undamaged surfaces. Cutting and contact conditions in the grinding profile vary dependent on their position. This thesis shows how temperatures vary with location and estimates the partitioning of the heat flux to the regions of the grinding profile. This suggested a constant partitioning of energy to each of the three surfaces considered independently of specific material removal rates. Further a potential link was shown between the surface and the sidewall of the grinding profile, which allows temperatures in a secondary surface to be predicted given knowledge of that in the primary. Finally, the work has demonstrated the feasibility of the Superabrasive Turning process. Using small values of feed per turn and high workpiece feedrates promoted high values of removal rate with low depths of thermal penetration in the as ground surface. Thus the process has become viable for high speed cylindrical traverse grinding.