The Developmental Organization of Robot Behavior


Book Description

A comprehensive introduction to the mathematical foundations of movement and actuation that apply equally to animals and machines. This textbook offers a computational framework for the sensorimotor stage of development as applied to robotics. Much work in developmental robotics is based on ad hoc examples, without a full computational basis. This book's comprehensive and complete treatment fills the gap, drawing on the principal mechanisms of development in the first year of life to introduce what is essentially an operating system for developing robots. The goal is to apply principles of development to robot systems that not only achieve new levels of performance but also provide evidence for scientific theories of human development.




MICAI 2005: Advances in Artificial Intelligence


Book Description

This book constitutes the refereed proceedings of the 4th Mexican International Conference on Artificial Intelligence, MICAI 2005, held in Monterrey, Mexico, in November 2005. The 120 revised full papers presented were carefully reviewed and selected from 423 submissions. The papers are organized in topical sections on knowledge representation and management, logic and constraint programming, uncertainty reasoning, multiagent systems and distributed AI, computer vision and pattern recognition, machine learning and data mining, evolutionary computation and genetic algorithms, neural networks, natural language processing, intelligent interfaces and speech processing, bioinformatics and medical applications, robotics, modeling and intelligent control, and intelligent tutoring systems.




Foundations of Artificial Intelligence and Robotics


Book Description

Artificial intelligence (AI) is a complicated science that combines philosophy, cognitive psychology, neuroscience, mathematics and logic (logicism), economics, computer science, computability, and software. Meanwhile, robotics is an engineering field that compliments AI. There can be situations where AI can function without a robot (e.g., Turing Test) and robotics without AI (e.g., teleoperation), but in many cases, each technology requires each other to exhibit a complete system: having "smart" robots and AI being able to control its interactions (i.e., effectors) with its environment. This book provides a complete history of computing, AI, and robotics from its early development to state‐of‐the‐art technology, providing a roadmap of these complicated and constantly evolving subjects. Divided into two volumes covering the progress of symbolic logic and the explosion in learning/deep learning in natural language and perception, this first volume investigates the coming together of AI (the mind) and robotics (the body), and discusses the state of AI today. Key Features: Provides a complete overview of the topic of AI, starting with philosophy, psychology, neuroscience, and logicism, and extending to the action of the robots and AI needed for a futuristic society Provides a holistic view of AI, and touches on all the misconceptions and tangents to the technologies through taking a systematic approach Provides a glossary of terms, list of notable people, and extensive references Provides the interconnections and history of the progress of technology for over 100 years as both the hardware (Moore’s Law, GPUs) and software, i.e., generative AI, have advanced Intended as a complete reference, this book is useful to undergraduate and postgraduate students of computing, as well as the general reader. It can also be used as a textbook by course convenors. If you only had one book on AI and robotics, this set would be the first reference to acquire and learn about the theory and practice.




Behavior-based Robotics


Book Description

Foreword by Michael Arbib This introduction to the principles, design, and practice of intelligent behavior-based autonomous robotic systems is the first true survey of this robotics field. The author presents the tools and techniques central to the development of this class of systems in a clear and thorough manner. Following a discussion of the relevant biological and psychological models of behavior, he covers the use of knowledge and learning in autonomous robots, behavior-based and hybrid robot architectures, modular perception, robot colonies, and future trends in robot intelligence. The text throughout refers to actual implemented robots and includes many pictures and descriptions of hardware, making it clear that these are not abstract simulations, but real machines capable of perception, cognition, and action.




Computational and Robotic Models of the Hierarchical Organization of Behavior


Book Description

Current robots and other artificial systems are typically able to accomplish only one single task. Overcoming this limitation requires the development of control architectures and learning algorithms that can support the acquisition and deployment of several different skills, which in turn seems to require a modular and hierarchical organization. In this way, different modules can acquire different skills without catastrophic interference, and higher-level components of the system can solve complex tasks by exploiting the skills encapsulated in the lower-level modules. While machine learning and robotics recognize the fundamental importance of the hierarchical organization of behavior for building robots that scale up to solve complex tasks, research in psychology and neuroscience shows increasing evidence that modularity and hierarchy are pivotal organization principles of behavior and of the brain. They might even lead to the cumulative acquisition of an ever-increasing number of skills, which seems to be a characteristic of mammals, and humans in particular. This book is a comprehensive overview of the state of the art on the modeling of the hierarchical organization of behavior in animals, and on its exploitation in robot controllers. The book perspective is highly interdisciplinary, featuring models belonging to all relevant areas, including machine learning, robotics, neural networks, and computational modeling in psychology and neuroscience. The book chapters review the authors' most recent contributions to the investigation of hierarchical behavior, and highlight the open questions and most promising research directions. As the contributing authors are among the pioneers carrying out fundamental work on this topic, the book covers the most important and topical issues in the field from a computationally informed, theoretically oriented perspective. The book will be of benefit to academic and industrial researchers and graduate students in related disciplines.




Intrinsic motivations and open-ended development in animals, humans, and robots


Book Description

The aim of this Research Topic for Frontiers in Psychology under the section of Cognitive Science and Frontiers in Neurorobotics is to present state-of-the-art research, whether theoretical, empirical, or computational investigations, on open-ended development driven by intrinsic motivations. The topic will address questions such as: How do motivations drive learning? How are complex skills built up from a foundation of simpler competencies? What are the neural and computational bases for intrinsically motivated learning? What is the contribution of intrinsic motivations to wider cognition? Autonomous development and lifelong open-ended learning are hallmarks of intelligence. Higher mammals, and especially humans, engage in activities that do not appear to directly serve the goals of survival, reproduction, or material advantage. Rather, a large part of their activity is intrinsically motivated - behavior driven by curiosity, play, interest in novel stimuli and surprising events, autonomous goal-setting, and the pleasure of acquiring new competencies. This allows the cumulative acquisition of knowledge and skills that can later be used to accomplish fitness-enhancing goals. Intrinsic motivations continue during adulthood, and in humans artistic creativity, scientific discovery, and subjective well-being owe much to them. The study of intrinsically motivated behavior has a long history in psychological and ethological research, which is now being reinvigorated by perspectives from neuroscience, artificial intelligence and computer science. For example, recent neuroscientific research is discovering how neuromodulators like dopamine and noradrenaline relate not only to extrinsic rewards but also to novel and surprising events, how brain areas such as the superior colliculus and the hippocampus are involved in the perception and processing of events, novel stimuli, and novel associations of stimuli, and how violations of predictions and expectations influence learning and motivation. Computational approaches are characterizing the space of possible reinforcement learning algorithms and their augmentation by intrinsic reinforcements of different kinds. Research in robotics and machine learning is yielding systems with increasing autonomy and capacity for self-improvement: artificial systems with motivations that are similar to those of real organisms and support prolonged autonomous learning. Computational research on intrinsic motivation is being complemented by, and closely interacting with, research that aims to build hierarchical architectures capable of acquiring, storing, and exploiting the knowledge and skills acquired through intrinsically motivated learning. Now is an important moment in the study of intrinsically motivated open-ended development, requiring contributions and integration across a large number of fields within the cognitive sciences. This Research Topic aims to contribute to this effort by welcoming papers carried out with ethological, psychological, neuroscientific and computational approaches, as well as research that cuts across disciplines and approaches.




Learning for Adaptive and Reactive Robot Control


Book Description

Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.




Robotics


Book Description

Papers from a flagship conference reflect the latest developments in the field, including work in such rapidly advancing areas as human-robot interaction and formal methods. Robotics: Science and Systems VII spans a wide spectrum of robotics, bringing together researchers working on the algorithmic or mathematical foundations of robotics, robotics applications, and analysis of robotics systems. This volume presents the proceedings of the seventh annual Robotics: Science and Systems conference, held in 2011 at the University of Southern California. The papers presented cover a wide range of topics in robotics, spanning mechanisms, kinematics, dynamics and control, human-robot interaction and human-centered systems, distributed systems, mobile systems and mobility, manipulation, field robotics, medical robotics, biological robotics, robot perception, and estimation and learning in robotic systems. The conference and its proceedings reflect not only the tremendous growth of robotics as a discipline but also the desire in the robotics community for a flagship event at which the best of the research in the field can be presented.




Behavior Trees in Robotics and AI


Book Description

Behavior Trees (BTs) provide a way to structure the behavior of an artificial agent such as a robot or a non-player character in a computer game. Traditional design methods, such as finite state machines, are known to produce brittle behaviors when complexity increases, making it very hard to add features without breaking existing functionality. BTs were created to address this very problem, and enables the creation of systems that are both modular and reactive. Behavior Trees in Robotics and AI: An Introduction provides a broad introduction as well as an in-depth exploration of the topic, and is the first comprehensive book on the use of BTs. This book introduces the subject of BTs from simple topics, such as semantics and design principles, to complex topics, such as learning and task planning. For each topic, the authors provide a set of examples, ranging from simple illustrations to realistic complex behaviors, to enable the reader to successfully combine theory with practice. Starting with an introduction to BTs, the book then describes how BTs relate to, and in many cases, generalize earlier switching structures, or control architectures. These ideas are then used as a foundation for a set of efficient and easy to use design principles. The book then presents a set of important extensions and provides a set of tools for formally analyzing these extensions using a state space formulation of BTs. With the new analysis tools, the book then formalizes the descriptions of how BTs generalize earlier approaches and shows how BTs can be automatically generated using planning and learning. The final part of the book provides an extended set of tools to capture the behavior of Stochastic BTs, where the outcomes of actions are described by probabilities. These tools enable the computation of both success probabilities and time to completion. This book targets a broad audience, including both students and professionals interested in modeling complex behaviors for robots, game characters, or other AI agents. Readers can choose at which depth and pace they want to learn the subject, depending on their needs and background.




Neurorobotics


Book Description

An introduction to neurorobotics that presents approaches and design principles for developing intelligent autonomous systems grounded in biology and neuroscience. Neurorobotics is an interdisciplinary field that draws on artificial intelligence, cognitive sciences, computer science, engineering, psychology, neuroscience, and robotics. Because the brain is closely coupled to the body and situated in the environment, neurorobots—autonomous systems modeled after some aspect of the brain—offer a powerful tool for studying neural function and may also be a means for developing autonomous systems with intelligence that rivals that of biological organisms. This textbook introduces approaches and design principles for developing intelligent autonomous systems grounded in biology and neuroscience. It is written for anyone interested in learning about this topic and can be used in cognitive robotics courses for students in psychology, cognitive science, and computer science. Neurorobotics covers the background and foundations of the field, with information on early neurorobots, relevant principles of neuroscience, learning rules and mechanisms, and reinforcement learning and prediction; neurorobot design principles grounded in neuroscience and principles of neuroscience research; and examples of neurorobots for navigation, developmental robotics, and social robots, presented with the cognitive science and neuroscience background that inspired them. A supplementary website offers videos, robot simulations, and links to software repositories with neurorobot examples.