Differential Forms in Electromagnetics


Book Description

An introduction to multivectors, dyadics, and differential forms for electrical engineers While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms. In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media. Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials.







Differential Forms on Electromagnetic Networks


Book Description

Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the applications for the field network model; oscillatory behavior of electric machines; and the rotation tensor in machine differential structures. The text is recommended for engineering students who would like to be familiarized with electromagnetic networks and its related topics.







Multiforms, Dyadics, and Electromagnetic Media


Book Description

This book applies the four-dimensional formalism with an extended toolbox of operation rules, allowing readers to define more general classes of electromagnetic media and to analyze EM waves that can exist in them End-of-chapter exercises Formalism allows readers to find novel classes of media Covers various properties of electromagnetic media in terms of which they can be set in different classes




Theory and Phenomena of Metamaterials


Book Description

Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.







Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering


Book Description

If you're looking for a clear, comprehensive and current overview of electromagnetics principles and applications to antenna and microwave circuit design for communications, this newly revised second edition is a smart choice. Among the numerous updates, the second edition features a brand new chapter on filters, an expanded treatment of antennas, and new sections of cylindrical waves and waves in layered media, multiconductor transmission lines, radio waveguides, and aperture coupling. What's more, you now find problem sets that help reinforce the understanding of key concepts in each chapter, making the book an excellent text for related graduate-level courses. For your convenience, the second edition presents examples in both exterior differential form calculus and conventional vector notation.




Directed Quantities in Electrodynamics


Book Description

This monograph explores classical electrodynamics from a geometrical perspective with a clear visual presentation throughout. Featuring over 200 figures, readers will delve into the definitions, properties, and uses of directed quantities in classical field theory. With an emphasis on both mathematical and electrodynamic concepts, the author’s illustrative approach will help readers understand the critical role directed quantities play in physics and mathematics. Chapters are organized so that they gradually scale in complexity, and carefully guide readers through important topics. The first three chapters introduce directed quantities in three dimensions with and without the metric, as well as the development of the algebra and analysis of directed quantities. Chapters four through seven then focus on electrodynamics without the metric, such as the premetric case, waves, and fully covariant four-dimensional electrodynamics. Complementing the book’s careful structure, exercises are included throughout for readers seeking further opportunities to practice the material. Directed Quantities in Electrodynamics will appeal to students, lecturers, and researchers of electromagnetism. It is particularly suitable as a supplement to standard textbooks on electrodynamics.