A First Lab in Circuits and Electronics


Book Description

* Experiments are linked to real applications. Students are likely to be interested and excited to learn more and explore. Example of experiments linked to real applications can be seen in Experiment 2, steps 6, 7, 15, and 16; Experiment 5, steps 6 to 10 and Experiment 7, steps 12 to 20. * Self-contained background to all electronics experiments. Students will be able to follow without having taken an electronics course. Includes a self-contained introduction based on circuits only. For the instructor this provides flexibility as to when to run the lab. It can run concurrently with the first circuits analysis course. * Review background sections are provided. This convenient text feature provides an alternative point of view; helps provide a uniform background for students of different theoretical backgrounds. * A "touch-and-feel" approach helps to provide intuition and to make things "click". Rather than thinking of the lab as a set of boring procedures, students get the idea that what they are learning is real. * Encourages students to explore and to ask "what if" questions. Helps students become active learners. * Introduces students to simple design at a very early stage. Helps students see the relevance of what they are learning, and to become active learners. * Helps students become tinkerers and to experiment on their own. Students are encouraged to become creative, and their mind is opened to new possibilities. This also benefits their subsequent professional work and/or graduate study.




Learning the Art of Electronics


Book Description

This introduction to circuit design is unusual in several respects. First, it offers not just explanations, but a full course. Each of the twenty-five sessions begins with a discussion of a particular sort of circuit followed by the chance to try it out and see how it actually behaves. Accordingly, students understand the circuit's operation in a way that is deeper and much more satisfying than the manipulation of formulas. Second, it describes circuits that more traditional engineering introductions would postpone: on the third day, we build a radio receiver; on the fifth day, we build an operational amplifier from an array of transistors. The digital half of the course centers on applying microcontrollers, but gives exposure to Verilog, a powerful Hardware Description Language. Third, it proceeds at a rapid pace but requires no prior knowledge of electronics. Students gain intuitive understanding through immersion in good circuit design.




Circuit Analysis Laboratory Workbook


Book Description

This workbook integrates theory with the concept of engineering design and teaches troubleshooting and analytical problem-solving skills. It is intended to either accompany or follow a first circuits course, and it assumes no previous experience with breadboarding or other lab equipment. This workbook uses only those components that are traditionally covered in a first circuits course (e.g., voltage sources, resistors, potentiometers, capacitors, and op amps) and gives students clear design goals, requirements, and constraints. Because we are using only components students have already learned how to analyze, they are able to tackle the design exercises, first working through the theory and math, then drawing and simulating their designs, and finally building and testing their designs on a breadboard.




Electronics Lab


Book Description

These action packed kits contain a 32-page manual with full, easy-to-follow instructions to perform experiments, make observations, baffle the eye, and explore the natural world. Kits come complete with enough supporting components to get any young scientist or curious explorer started.




Foundations of Analog and Digital Electronic Circuits


Book Description

Unlike books currently on the market, this book attempts to satisfy two goals: combine circuits and electronics into a single, unified treatment, and establish a strong connection with the contemporary world of digital systems. It will introduce a new way of looking not only at the treatment of circuits, but also at the treatment of introductory coursework in engineering in general. Using the concept of ''abstraction,'' the book attempts to form a bridge between the world of physics and the world of large computer systems. In particular, it attempts to unify electrical engineering and computer science as the art of creating and exploiting successive abstractions to manage the complexity of building useful electrical systems. Computer systems are simply one type of electrical systems.+Balances circuits theory with practical digital electronics applications.+Illustrates concepts with real devices.+Supports the popular circuits and electronics course on the MIT OpenCourse Ware from which professionals worldwide study this new approach.+Written by two educators well known for their innovative teaching and research and their collaboration with industry.+Focuses on contemporary MOS technology.




Learn Electronics with Raspberry Pi


Book Description

Make a variety of cool projects using the Pi with programming languages like Scratch and Python, with no experience necessary. You'll learn how the Pi works, how to work with Raspbian Linux on the Pi, and how to design and create electronic circuits. Raspberry Pi is everywhere, it’s inexpensive, and it's a wonderful tool for teaching about electronics and programming. This book shows you how to create projects like an arcade game, disco lights, and infrared transmitter, and an LCD display. You'll also learn how to control Minecraft's Steve with a joystick and how to build a Minecraft house with a Pi, and even how to control a LEGO train with a Pi. You'll even learn how to create your own robot, including how to solder and even design a printed circuit board! Learning electronics can be tremendous fun — your first flashing LED circuit is a reason to celebrate! But where do you go from there, and how can you move into more challenging projects without spending a lot of money on proprietary kits? Learn Electronics with Raspberry Pi shows you how to and a lot more. What You'll Learn Design and build electronic circuits Make fun projects like an arcade game, a robot, and a Minecraft controller Program the Pi with Scratch and Python Who This Book Is For Makers, students, and teachers who want to learn about electronics and programming with the fun and low-cost Raspberry Pi.




Lab Manual for Electronics


Book Description

The emphasis is first on understanding the characteristics of basic circuits including resistors, capacitors, diodes, and bipolar and field effect transistors. The readers then use this understanding to construct more complex circuits such as power supplies, differential amplifiers, tuned circuit amplifiers, a transistor curve tracer, and a digital voltmeter. In addition, readers are exposed to special topics of current interest, such as the propagation and detection of signals through fiber optics, the use of Van der Pauw patterns for precise linewidth measurements, and high gain amplifiers based on active loads. KEY TOPICS: Chapter topics include Thevenin's Theorem; Resistive Voltage Division; Silicon Diodes; Resistor Capacitor Circuits; Half Wave Rectifiers; DC Power Supplies; Diode Applications; Bipolar Transistors; Field Effect Transistors; Characterization of Op-Amp Circuits; Transistor Curve Tracer; Introduction to PSPICE and AC Voltage Dividers; Characterization and Design of Emitter and Source Followers; Characterization and Design of an AC Variable Gain Amplifier; Design of Test Circuits for BJT's and FET's and Design of FET Ring Oscillators; Design and Characterization of Emitter Coupled Transistor Pairs; Tuned Amplifier and Oscillator; Design of Am Radio Frequency Transmitter and Receiver; Design of Oscillators Using Op-Amps; Current Mirrors and Active Loads; Sheet Resistance; Design of Analog Fiber Optic Transmission System; Digital Voltmeter.




Make: Electronics


Book Description

"A hands-on primer for the new electronics enthusiast"--Cover.




Make: Electronics


Book Description

"This is teaching at its best!" --Hans Camenzind, inventor of the 555 timer (the world's most successful integrated circuit), and author of Much Ado About Almost Nothing: Man's Encounter with the Electron (Booklocker.com) "A fabulous book: well written, well paced, fun, and informative. I also love the sense of humor. It's very good at disarming the fear. And it's gorgeous. I'll be recommending this book highly." --Tom Igoe, author of Physical Computing and Making Things Talk Want to learn the fundamentals of electronics in a fun, hands-on way? With Make: Electronics, you'll start working on real projects as soon as you crack open the book. Explore all of the key components and essential principles through a series of fascinating experiments. You'll build the circuits first, then learn the theory behind them! Build working devices, from simple to complex You'll start with the basics and then move on to more complicated projects. Go from switching circuits to integrated circuits, and from simple alarms to programmable microcontrollers. Step-by-step instructions and more than 500 full-color photographs and illustrations will help you use -- and understand -- electronics concepts and techniques. Discover by breaking things: experiment with components and learn from failure Set up a tricked-out project space: make a work area at home, equipped with the tools and parts you'll need Learn about key electronic components and their functions within a circuit Create an intrusion alarm, holiday lights, wearable electronic jewelry, audio processors, a reflex tester, and a combination lock Build an autonomous robot cart that can sense its environment and avoid obstacles Get clear, easy-to-understand explanations of what you're doing and why




The First Book of Electronics Workshop


Book Description

This book is an attempt to redress these shortcomings by providing an apt and concise description of basic electronic components and apparatus and how to work with them practically. Theoretical description is followed by specifying the practical considerations so as to cement the student's understanding of the component/apparatus.