Real-Time Simulation Technologies: Principles, Methodologies, and Applications


Book Description

Real-Time Simulation Technologies: Principles, Methodologies, and Applications is an edited compilation of work that explores fundamental concepts and basic techniques of real-time simulation for complex and diverse systems across a broad spectrum. Useful for both new entrants and experienced experts in the field, this book integrates coverage of detailed theory, acclaimed methodological approaches, entrenched technologies, and high-value applications of real-time simulation—all from the unique perspectives of renowned international contributors. Because it offers an accurate and otherwise unattainable assessment of how a system will behave over a particular time frame, real-time simulation is increasingly critical to the optimization of dynamic processes and adaptive systems in a variety of enterprises. These range in scope from the maintenance of the national power grid, to space exploration, to the development of virtual reality programs and cyber-physical systems. This book outlines how, for these and other undertakings, engineers must assimilate real-time data with computational tools for rapid decision making under uncertainty. Clarifying the central concepts behind real-time simulation tools and techniques, this one-of-a-kind resource: Discusses the state of the art, important challenges, and high-impact developments in simulation technologies Provides a basis for the study of real-time simulation as a fundamental and foundational technology Helps readers develop and refine principles that are applicable across a wide variety of application domains As science moves toward more advanced technologies, unconventional design approaches, and unproven regions of the design space, simulation tools are increasingly critical to successful design and operation of technical systems in a growing number of application domains. This must-have resource presents detailed coverage of real-time simulation for system design, parallel and distributed simulations, industry tools, and a large set of applications.




Real-Time Simulation Technologies: Principles, Methodologies, and Applications


Book Description

Real-Time Simulation Technologies: Principles, Methodologies, and Applications is an edited compilation of work that explores fundamental concepts and basic techniques of real-time simulation for complex and diverse systems across a broad spectrum. Useful for both new entrants and experienced experts in the field, this book integrates coverage of detailed theory, acclaimed methodological approaches, entrenched technologies, and high-value applications of real-time simulation—all from the unique perspectives of renowned international contributors. Because it offers an accurate and otherwise unattainable assessment of how a system will behave over a particular time frame, real-time simulation is increasingly critical to the optimization of dynamic processes and adaptive systems in a variety of enterprises. These range in scope from the maintenance of the national power grid, to space exploration, to the development of virtual reality programs and cyber-physical systems. This book outlines how, for these and other undertakings, engineers must assimilate real-time data with computational tools for rapid decision making under uncertainty. Clarifying the central concepts behind real-time simulation tools and techniques, this one-of-a-kind resource: Discusses the state of the art, important challenges, and high-impact developments in simulation technologies Provides a basis for the study of real-time simulation as a fundamental and foundational technology Helps readers develop and refine principles that are applicable across a wide variety of application domains As science moves toward more advanced technologies, unconventional design approaches, and unproven regions of the design space, simulation tools are increasingly critical to successful design and operation of technical systems in a growing number of application domains. This must-have resource presents detailed coverage of real-time simulation for system design, parallel and distributed simulations, industry tools, and a large set of applications.




Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems


Book Description

This four-volume set (CCIS 643, 644, 645, 646) constitutes the refereed proceedings of the 16th Asia Simulation Conference and the First Autumn Simulation Multi-Conference, AsiaSim / SCS AutumnSim 2016, held in Beijing, China, in October 2016. The 265 revised full papers presented were carefully reviewed and selected from 651 submissions. The papers in this third volume of the set are organized in topical sections on Cloud technologies in simulation applications; fractional calculus with applications and simulations; modeling and simulation for energy, environment and climate; SBA virtual prototyping engineering technology; simulation and Big Data.




Real Time Programming 1999


Book Description

In 1999 the IFAC/IFIP Workshop on Real Time Programming (WRTP) joined forces with the Workshop on Active and Real-Time Database Systems (ARTDB). Both series of workshops provide an excellent forum for exchanging information on recent scientific and technological advances and practices in real time computing, a field that is becoming an essential enabling discipline of both control engineering and computer science and engineering. The annual Workshop on Real Time Programming and the bi-annual Workshop on Active and Real-time Databases Systems are intended as meetings of relatively small numbers of experts in their fields taking place as truly international events. The 1999 Workshop maintained the outstanding quality of both series, providing an opportunity to assess the state-of-the-art, to present new results, and to discuss possible lines of future developments. Primarily, it focused on software development for real time systems, real time operating systems and active and real time database systems. In particular, the technical programme of the Workshop covered latest research and developments in requirements engineering, software engineering, active and real time database systems, communication and clock synchronisation, embedded systems, formal methods, operating systems and scheduling. Out of 58 submissions from 19 countries, the International Programme Committee selected 26 regular papers and 8 reserve papers for presentation at the Workshop. Contributions come from Europe, North America, Australia, and the Far East. In addition to these, the programme also featured two world renowned keynote speakers, and a discussion panel about the state-of-the-art in the field of active real time database systems.




Real-Time Systems Design and Analysis


Book Description

"IEEE Press is pleased to bring you this Second Edition of Phillip A. Laplante's best-selling and widely-acclaimed practical guide to building real-time systems. This book is essential for improved system designs, faster computation, better insights, and ultimate cost savings. Unlike any other book in the field, REAL-TIME SYSTEMS DESIGN AND ANALYSIS provides a holistic, systems-based approach that is devised to help engineers write problem-solving software. Laplante's no-nonsense guide to real-time system design features practical coverage of: Related technologies and their histories Time-saving tips * Hands-on instructions Pascal code Insights into decreasing ramp-up times and more!"




Guide to Modeling and Simulation of Systems of Systems


Book Description

This easy-to-follow textbook provides an exercise-driven guide to the use of the Discrete Event Systems Specification (DEVS) simulation modeling formalism and the System Entity Structure (SES) simulation model ontology supported with the latest advances in software architecture and design principles, methods, and tools for building and testing virtual Systems of Systems (SoS). The book examines a wide variety of SoS problems, ranging from cloud computing systems to biological systems in agricultural food crops. This enhanced and expanded second edition also features a new chapter on DEVS support for Markov modeling and simulation. Topics and features: provides an extensive set of exercises throughout the text to reinforce the concepts and encourage use of the tools, supported by introduction and summary sections; discusses how the SoS concept and supporting virtual build and test environments can overcome the limitations of current approaches; offers a step-by-step introduction to the DEVS concepts and modeling environment features required to build sophisticated SoS models; describes the capabilities and use of the tools CoSMoS/DEVS-Suite, Virtual Laboratory Environment, and MS4 MeTM; reviews a range of diverse applications, from the development of new satellite design and launch technologies, to surveillance and control in animal epidemiology; examines software/hardware co-design for SoS, and activity concepts that bridge information-level requirements and energy consumption in the implementation; demonstrates how the DEVS formalism supports Markov modeling within an advanced modeling and simulation environment (NEW). This accessible and hands-on textbook/reference provides invaluable practical guidance for graduate students interested in simulation software development and cyber-systems engineering design, as well as for practitioners in these, and related areas.




Simulation, Modeling, and Programming for Autonomous Robots


Book Description

Why are the many highly capable autonomous robots that have been promised for novel applications driven by society, industry, and research not available - day despite the tremendous progress in robotics science and systems achieved during the last decades? Unfortunately, steady improvements in speci?c robot abilities and robot hardware have not been matched by corresponding robot performance in real world environments. This is mainly due to the lack of - vancements in robot software that master the development of robotic systems of ever increasing complexity. In addition, fundamental open problems are still awaiting sound answers while the development of new robotics applications s- fersfromthelackofwidelyusedtools,libraries,andalgorithmsthataredesigned in a modular and performant manner with standardized interfaces. Simulation environments are playing a major role not only in reducing development time and cost, e. g. , by systematic software- or hardware-in-the-loop testing of robot performance, but also in exploring new types of robots and applications. H- ever,their use may still be regardedwith skepticism. Seamless migrationof code using robot simulators to real-world systems is still a rare circumstance, due to the complexity of robot, world, sensor, and actuator modeling. These challenges drive the quest for the next generation of methodologies and tools for robot development. The objective of the International Conference on Simulation, Modeling, and ProgrammingforAutonomous Robots (SIMPAR) is to o?er a unique forum for these topics and to bring together researchersfrom academia and industry to identify and solve the key issues necessary to ease the development of increasingly complex robot software.




Real Time Computing


Book Description

NATO's Division of Scientific and Environmental Affairs sponsored this Advan ced Study Institute because it was felt to be timely to cover this important and challengjng subject for the first time in the framework of NATO's ASI programme. The significance of real-time systems in everyones' life is rapidly growing. The vast spectrum of these systems can be characterised by just a few examples of increasing complexity: controllers in washing machines, air traffic control systems, control and safety systems of nuclear power plants and, finally, future military systems like the Strategic Defense Initiative (SDI). The import ance of such systems for the well-being of people requires considerable efforts in research and development of highly reliable real-time systems. Furthermore, the competitiveness and prosperity of entire nations now depend on the early app lication and efficient utilisation of computer integrated manufacturing systems (CIM), of which real-time systems are an essential and decisive part. Owing to its key significance in computerised defence systems, real-time computing has also a special importance for the Alliance. The early research and development activities in this field in the 1960s and 1970s aimed towards improving the then unsatisfactory software situation. Thus, the first high-level real-time languages were defined and developed: RTL/2, Coral 66, Procol, LTR, and PEARL. In close connection with these language develop ments and with the utilisation of special purpose process control peripherals, the research on real-time operating systems advanced considerably.




Netcentric System of Systems Engineering with DEVS Unified Process


Book Description

In areas such as military, security, aerospace, and disaster management, the need for performance optimization and interoperability among heterogeneous systems is increasingly important. Model-driven engineering, a paradigm in which the model becomes the actual software, offers a promising approach toward systems of systems (SoS) engineering. However, model-driven engineering has largely been unachieved in complex dynamical systems and netcentric SoS, partly because modeling and simulation (M&S) frameworks are stove-piped and not designed for SoS composability. Addressing this gap, Netcentric System of Systems Engineering with DEVS Unified Process presents a methodology for realizing the model-driven engineering vision and netcentric SoS using DEVS Unified Process (DUNIP). The authors draw on their experience with Discrete Event Systems Specification (DEVS) formalism, System Entity Structure (SES) theory, and applying model-driven engineering in the context of a netcentric SoS. They describe formal model-driven engineering methods for netcentric M&S using standards-based approaches to develop and test complex dynamic models with DUNIP. The book is organized into five sections: Section I introduces undergraduate students and novices to the world of DEVS. It covers systems and SoS M&S as well as DEVS formalism, software, modeling language, and DUNIP. It also assesses DUNIP with the requirements of the Department of Defense’s (DoD) Open Unified Technical Framework (OpenUTF) for netcentric Test and Evaluation (T&E). Section II delves into M&S-based systems engineering for graduate students, advanced practitioners, and industry professionals. It provides methodologies to apply M&S principles to SoS design and reviews the development of executable architectures based on a framework such as the Department of Defense Architecture Framework (DoDAF). It also describes an approach for building netcentric knowledge-based contingency-driven systems. Section III guides graduate students, advanced DEVS users, and industry professionals who are interested in building DEVS virtual machines and netcentric SoS. It discusses modeling standardization, the deployment of models and simulators in a netcentric environment, event-driven architectures, and more. Section IV explores real-world case studies that realize many of the concepts defined in the previous chapters. Section V outlines the next steps and looks at how the modeling of netcentric complex adaptive systems can be attempted using DEVS concepts. It touches on the boundaries of DEVS formalism and the future work needed to utilize advanced concepts like weak and strong emergence, self-organization, scale-free systems, run-time modularity, and event interoperability. This groundbreaking work details how DUNIP offers a well-structured, platform-independent methodology for the modeling and simulation of netcentric system of systems.