A Guide to Energy Forecasting


Book Description

This book explores the purposes, methodologies, modelling techniques and weaknesses in energy forecasting. It provides a rare appraisal of what is generally known as the ‘end use sector’ approach to global demand forecasting. It exposes the fallibilities that are hidden in the seductive power point presentations of forecasters and the false sense of accuracy bestowed upon them. It nevertheless stresses that forecasting remains crucial and of value to the industry. By raising awareness of the forecasting risks and the often ‘smoke and mirrors’ nature of the exercise as well as offering commentary on how the process and use of forecasts could be improved, although not necessarily the accuracy, this book is must-read for those in government, corporate planning and financing sectors of the energy industry who rely on forecasts to make policy, investment and trading decisions.




Modeling and Forecasting Electricity Loads and Prices


Book Description

This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.




Electrical Load Forecasting


Book Description

Succinct and understandable, this book is a step-by-step guide to the mathematics and construction of electrical load forecasting models. Written by one of the world’s foremost experts on the subject, Electrical Load Forecasting provides a brief discussion of algorithms, their advantages and disadvantages and when they are best utilized. The book begins with a good description of the basic theory and models needed to truly understand how the models are prepared so that they are not just blindly plugging and chugging numbers. This is followed by a clear and rigorous exposition of the statistical techniques and algorithms such as regression, neural networks, fuzzy logic, and expert systems. The book is also supported by an online computer program that allows readers to construct, validate, and run short and long term models. Step-by-step guide to model construction Construct, verify, and run short and long term models Accurately evaluate load shape and pricing Creat regional specific electrical load models




Integrating Renewables in Electricity Markets


Book Description

This addition to the ISOR series addresses the analytics of the operations of electric energy systems with increasing penetration of stochastic renewable production facilities, such as wind- and solar-based generation units. As stochastic renewable production units become ubiquitous throughout electric energy systems, an increasing level of flexible backup provided by non-stochastic units and other system agents is needed if supply security and quality are to be maintained. Within the context above, this book provides up-to-date analytical tools to address challenging operational problems such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract the variability and unpredictability of stochastic renewable units so that supply security is not at risk. • The trading of the electric energy produced by stochastic renewable producers. • The association of a number of electricity production facilities, stochastic and others, to increase their competitive edge in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, applied mathematics and economics. Practitioners in the electric energy sector will benefit as well from the concepts and techniques explained in this book.




Energy for Sustainable Development


Book Description

Energy for Sustainable Development: Demand, Supply, Conversion and Management presents a comprehensive look at recent developments and provides guidance on energy demand, supply, analysis and forecasting of modern energy technologies for sustainable energy conversion. The book analyzes energy management techniques and the economic and environmental impact of energy usage and storage. Including modern theories and the latest technologies used in the conversion of energy for traditional fossil fuels and renewable energy sources, this book provides a valuable reference on recent innovations. Researchers, engineers and policymakers will find this book to be a comprehensive guide on modern theories and technologies for sustainable development.




Guide to Weather Forecasting


Book Description

Describes weather forecasting, including how different phenomena develop, how geography produces local weather patterns, and ways to make a forecast at home.




Renewable Energy Forecasting


Book Description

Renewable Energy Forecasting: From Models to Applications provides an overview of the state-of-the-art of renewable energy forecasting technology and its applications. After an introduction to the principles of meteorology and renewable energy generation, groups of chapters address forecasting models, very short-term forecasting, forecasting of extremes, and longer term forecasting. The final part of the book focuses on important applications of forecasting for power system management and in energy markets. Due to shrinking fossil fuel reserves and concerns about climate change, renewable energy holds an increasing share of the energy mix. Solar, wind, wave, and hydro energy are dependent on highly variable weather conditions, so their increased penetration will lead to strong fluctuations in the power injected into the electricity grid, which needs to be managed. Reliable, high quality forecasts of renewable power generation are therefore essential for the smooth integration of large amounts of solar, wind, wave, and hydropower into the grid as well as for the profitability and effectiveness of such renewable energy projects. - Offers comprehensive coverage of wind, solar, wave, and hydropower forecasting in one convenient volume - Addresses a topic that is growing in importance, given the increasing penetration of renewable energy in many countries - Reviews state-of-the-science techniques for renewable energy forecasting - Contains chapters on operational applications




Forecasting for Technologists and Engineers


Book Description

This book is written for all technologists and engineers. To those unfamiliar with forecasting it may appear a somewhat esoteric activity with little relevance to the everyday technical concerns of the reader. This is not so. The aim of this book is to show how forecasting can improve the quality of technical decision making. Furthermore, this can be accomplished without the use of highly sophisticated techniques which can only be applied by specialists. The approaches described in this book can be easily understood and used by all its readers.




Statistical Postprocessing of Ensemble Forecasts


Book Description

Statistical Postprocessing of Ensemble Forecasts brings together chapters contributed by international subject-matter experts describing the current state of the art in the statistical postprocessing of ensemble forecasts. The book illustrates the use of these methods in several important applications including weather, hydrological and climate forecasts, and renewable energy forecasting. After an introductory section on ensemble forecasts and prediction systems, the second section of the book is devoted to exposition of the methods available for statistical postprocessing of ensemble forecasts: univariate and multivariate ensemble postprocessing are first reviewed by Wilks (Chapters 3), then Schefzik and Möller (Chapter 4), and the more specialized perspective necessary for postprocessing forecasts for extremes is presented by Friederichs, Wahl, and Buschow (Chapter 5). The second section concludes with a discussion of forecast verification methods devised specifically for evaluation of ensemble forecasts (Chapter 6 by Thorarinsdottir and Schuhen). The third section of this book is devoted to applications of ensemble postprocessing. Practical aspects of ensemble postprocessing are first detailed in Chapter 7 (Hamill), including an extended and illustrative case study. Chapters 8 (Hemri), 9 (Pinson and Messner), and 10 (Van Schaeybroeck and Vannitsem) discuss ensemble postprocessing specifically for hydrological applications, postprocessing in support of renewable energy applications, and postprocessing of long-range forecasts from months to decades. Finally, Chapter 11 (Messner) provides a guide to the ensemble-postprocessing software available in the R programming language, which should greatly help readers implement many of the ideas presented in this book. Edited by three experts with strong and complementary expertise in statistical postprocessing of ensemble forecasts, this book assesses the new and rapidly developing field of ensemble forecast postprocessing as an extension of the use of statistical corrections to traditional deterministic forecasts. Statistical Postprocessing of Ensemble Forecasts is an essential resource for researchers, operational practitioners, and students in weather, seasonal, and climate forecasting, as well as users of such forecasts in fields involving renewable energy, conventional energy, hydrology, environmental engineering, and agriculture. - Consolidates, for the first time, the methodologies and applications of ensemble forecasts in one succinct place - Provides real-world examples of methods used to formulate forecasts - Presents the tools needed to make the best use of multiple model forecasts in a timely and efficient manner




Weather & Climate Services for the Energy Industry


Book Description

This open access book showcases the burgeoning area of applied research at the intersection between weather and climate science and the energy industry. It illustrates how better communication between science and industry can help both sides. By opening a dialogue, scientists can understand the broader context for their work and the energy industry is able to keep track of and implement the latest scientific advances for more efficient and sustainable energy systems. Weather & Climate Services for the Energy Industry considers the lessons learned in establishing an ongoing discussion between the energy industry and the meteorological community and how its principles and practises can be applied elsewhere. This book will be a useful guiding resource for research and early career practitioners concerned with the energy industry and the new field of research known as energy meteorology.