An Introduction to the Theory of Elasticity


Book Description

Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.




Sophie Germain


Book Description

Why should the story of a woman's role in the development of a scientific theory be written? Is it to celebrate, as some have done, the heroism of a woman's struggle in a man's world? Or is it, rather~to demonstrate that gender is irrelevant to the march of scientific ideas? This book hopes to do neither. Rather, it intends to do justice both to the professional life of a woman in science and to the development of the theory with which she was engaged. Technically, this essay centers on Sophie Germain's analysis of the modes of vibration of elastic surfaces, work which won a competition set by the French Academy of Sciences in 1809. It also evaluates related work on the mathematical theory of elasticity done by men of the Academy. Biographically, it is about a woman who believed in the greatness of science and strove, with some measure of success, to participate in that noble, but wholly male-dominated, enterprise. It explores her failures, analyzes her success, and describes how the members of the Parisian scientific community dealt with her offerings, contributions and demands.







History of Strength of Materials


Book Description

Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.




Elasticity


Book Description

Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of




Strength of Materials and Theory of Elasticity in 19th Century Italy


Book Description

This book examines the theoretical foundations underpinning the field of strength of materials/theory of elasticity, beginning from the origins of the modern theory of elasticity. While the focus is on the advances made within Italy during the nineteenth century, these achievements are framed within the overall European context. The vital contributions of Italian mathematicians, mathematical physicists and engineers in respect of the theory of elasticity, continuum mechanics, structural mechanics, the principle of least work and graphical methods in engineering are carefully explained and discussed. The book represents a work of historical research that primarily comprises original contributions and summaries of work published in journals. It is directed at those graduates in engineering, but also in architecture, who wish to achieve a more global and critical view of the discipline and will also be invaluable for all scholars of the history of mechanics.




Theory of Elasticity for Scientists and Engineers


Book Description

This book is intended to be an introduction to elasticity theory. It is as sumed that the student, before reading this book, has had courses in me chanics (statics, dynamics) and strength of materials (mechanics of mate rials). It is written at a level for undergraduate and beginning graduate engineering students in mechanical, civil, or aerospace engineering. As a background in mathematics, readers are expected to have had courses in ad vanced calculus, linear algebra, and differential equations. Our experience in teaching elasticity theory to engineering students leads us to believe that the course must be problem-solving oriented. We believe that formulation and solution of the problems is at the heart of elasticity theory. 1 Of course orientation to problem-solving philosophy does not exclude the need to study fundamentals. By fundamentals we mean both mechanical concepts such as stress, deformation and strain, compatibility conditions, constitu tive relations, energy of deformation, and mathematical methods, such as partial differential equations, complex variable and variational methods, and numerical techniques. We are aware of many excellent books on elasticity, some of which are listed in the References. If we are to state what differentiates our book from other similar texts we could, besides the already stated problem-solving ori entation, list the following: study of deformations that are not necessarily small, selection of problems that we treat, and the use of Cartesian tensors only.




THEORY OF ELASTICITY AND PLASTICITY


Book Description

Theory of Elasticity and Plasticity is designed as a textbook for both undergraduate and postgraduate students of engineering in civil, mechanical and aeronautical disciplines. This book has been written with the objective of bringing the concepts of elasticity and plasticity to the students in a simplified and comprehensive manner. The basic concepts, definitions, theory as well as practical applications are discussed in a clear, logical and concise manner for better understanding. Starting with, general relationships between stress, strain and deformations, the book deals with specific problems on plane stress, plane strain and torsion in non-circular sections. Advanced topics such as membrane analogy, beams on elastic foundations and plastic analysis of pressure vessels are also discussed elaborately. For better comprehension, the text is well supported with:  Large number of worked-out examples in each chapter.  Well-labelled illustrations.  Numerous Review Questions that reinforce the understanding of the subject. As all the concepts are covered extensively with a blend of theory and practice, this book will be a useful resource to the students.




Elasticity


Book Description

A comprehensive survey of the methods and theories of linear elasticity, this three-part introductory treatment covers general theory, two-dimensional elasticity, and three-dimensional elasticity. Ideal text for a two-course sequence on elasticity. 1984 edition.