Nanostructures in Ferroelectric Films for Energy Applications


Book Description

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals.




Ferroelectric Domain Walls


Book Description

Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.




Ferroelectric Materials and Ferroelectricity


Book Description

This volume is a joint effort of the Research Materials Information Center (RMIC) of the Solid State Division at Oak Ridge National Laboratory and the Libraries and Information Systems Center at Bell Telephone Laboratories (BTL) Murray Hill, N. J. The Research Materials Information Center has, since 1963, been answering inquiries on the avail ability, preparation, and properties of inorganic solid-state research materials. The preparation of bibliographies has been essential to this function, and the interest in ferroelectrics led to the compila tion of the journal and report literature on that subject. The 1962 book Ferroelectric Crystals, by Jona and Shirane, was taken as a cutoff point, and all papers through mid-1969 received by the Center have been included. The Libraries and Information Systems Center of BTL has, over a period of years, developed a proprie tary package of computer programs called BELDEX, which formats and generates indexes to biblio graphic material. This group therefore undertook to process RMIC's ferroelectric references by BELDEX so that both laboratories could have the benefit of an indexed basic bibliography in this important research area.




Ceramic Abstracts


Book Description




Electrocaloric Materials


Book Description

Since the 1997 Kyoto protocol of reduction of greenhouse gas emissions, the development of novel refrigerators has been a priority within the scientific community. Although magnetocaloric materials are promising candidates, they still need a large magnetic field to induce a giant ΔT as well as powerful and costly magnets. However, in electrocaloric materials (ECMs) a temperature change may be achieved by applying or removing an electric field. Since a giant electrocaloric effect on ferroelectric thin films was reported in Science in 2006, researchers have been inspired to explore such effect in different ferroelectric thin films. This book reviews electrocaloric effects observed in bulk materials as well as recent promising advances in thin films, with special emphasis on the ferroelectric, antiferroelectric and relaxor nature of ECMs. It reports a number of considerations about the future of ECMs as a means of achieving an efficient, ecologically sustainable and low cost refrigerator.




Physics Briefs


Book Description




Multiferroic Materials


Book Description

"a very detailed book on multiferroics that will be useful for PhD students and researchers interested in this emerging field of materials science" —Dr. Wilfrid Prellier, Research Director, CNRS, Caen, France Multiferroics has emerged as one of the hottest topics in solid state physics in this millennium. The coexistence of multiple ferroic/antiferroic properties makes them useful both for fundamental studies and practical applications such as revolutionary new memory technologies and next-generation spintronics devices. This book provides an historical introduction to the field, followed by a summary of recent progress in single-phase multiferroics (type-I and type-II), multiferroic composites (bulk and nano composites), and emerging areas such as domain walls and vortices. Each chapter addresses potential technological implications. There is also a section dedicated to theoretical approaches, both phenomenological and first-principles calculations.




Neutron Scattering - Magnetic and Quantum Phenomena


Book Description

Neutron Scattering - Magnetic and Quantum Phenomena provides detailed coverage of the application of neutron scattering in condensed matter research. The book's primary aim is to enable researchers in a particular area to identify the aspects of their work where neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major user facilities, and perform the experiments under the guidance of the appropriate instrument scientist. An earlier series edited by Kurt Sköld and David L. Price, and published in the 1980s by Academic Press as three volumes in the series Methods of Experimental Physics, was very successful and remained the standard reference in the field for several years. This present work has similar goals, taking into account the advances in experimental techniques over the past quarter-century, for example, neutron reflectivity and spin-echo spectroscopy, and techniques for probing the dynamics of complex materials of technological relevance. This volume complements Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013. - Covers the application of neutron scattering techniques in the study of quantum and magnetic phenomena, including superconductivity, multiferroics, and nanomagnetism - Presents up-to-date reviews of recent results, aimed at enabling the reader to identify new opportunities and plan neutron scattering experiments in their own field - Provides a good balance between theory and experimental techniques - Provides a complement to Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013




Advanced Materials Interfaces


Book Description

Advanced Material Interfaces is a state-of-the-art look at innovative methodologies and strategies adopted for interfaces and their applications. The 13 chapters are written by eminent researchers not only elaborate complex interfaces fashioned of solids, liquids, and gases, but also ensures cross-disciplinary mixture and blends of physics, chemistry, materials science, engineering and life sciences. Advanced interfaces operate fundamental roles in essentially all integrated devices. It is therefore of the utmost urgency to focus on how newly-discovered fundamental constituents and interfacial progressions can be materialized and used for precise purposes. Interfaces are associated in wide multiplicity of application spectrum from chemical catalysis to drug functions and the advancement is funnelled by fine-tuning of our fundamental understanding of the interface effects.




Mesoscopic Phenomena in Multifunctional Materials


Book Description

A highly coveted objective of modern materials science is to optimize multiple coupled functionalities in the same single phase material and control the cross-response via multiple external fields. One important example of such multi-functionality are multiferroic materials where two or more ferroic properties are intrinsically coupled. They include, among others, the magneto-electric and magneto-structural materials, which are well understood at the nano- and continuum length (and time) scales. The next emerging frontier is to connect these two limiting scales by probing the mesoscale physics of these materials. This book not only attempts to provide this connection but also presents the state-of-the art of the present understanding and potential applications of many related complex multifunctional materials. The main emphasis is on the multiscale bridging of their properties with the aim to discover novel properties and applications in the context of materials by design. This interdisciplinary book serves both graduate students and expert researchers alike.