A Physically Oriented Method for Quantitative Magnetic Resonance Imaging


Book Description

Quantitative magnetic resonance imaging (qMRI) denotes the task of estimating the values of magnetic and tissue parameters, e.g., relaxation times T1, T2, proton density p and others. Recently in [Ma et al., Nature, 2013], an approach named Magnetic Resonance Fingerprinting (MRF) was introduced, being capable of simultaneously recovering these parameters by using a two step procedure: (i) a series of magnetization maps are created and then (ii) these are matched to parameters with the help of a pre-computed dictionary (Bloch manifold). In this paper, we initially put MRF and its variants in the perspective of optimization and inverse problems, providing some mathematical insights into these methods. Motivated by the fact that the Bloch manifold is non-convex, and the accuracy of the MRF type algorithms is limited by the discretization size of the dictionary, we propose here a novel physically oriented method for qMRI. In contrast to the conventional two step models, our model is dictionary-free and it is described by a single nonlinear equation, governed by an operator for which we prove differentiability and other properties. This non-linear equation is efficiently solved via robust Newton type methods. The effectiveness of our method for noisy and undersampled data is shown both analytically and via numerical examples where also improvement over MRF and its variants is observed.




Quantitative Magnetic Resonance Imaging


Book Description

Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches




Quantitative MRI of the Brain


Book Description

Building on the success of the first edition of this book, the winner of the 2004 British Medical Association Radiology Medical Book Competition, Quantitative MRI of the Brain: Principles of Physical Measurement gives a unique view on how to use an MRI machine in a new way. Used as a scientific instrument it can make measurements of a myriad of physical and biological quantities in the human brain and body. For each small tissue voxel, non-invasive information monitors how tissue changes with disease and responds to treatment. The book opens with a detailed exposition of the principles of good practice in quantification, including fundamental concepts, quality assurance, MR data collection and analysis and improved study statistical power through minimised instrumental variation. There follow chapters on 14 specific groups of quantities: proton density, T1, T2, T2*, diffusion, advanced diffusion, magnetisation transfer, CEST, 1H and multi-nuclear spectroscopy, DCE-MRI, quantitative fMRI, arterial spin-labelling and image analysis, and finally a chapter on the future of quantification. The physical principles behind each quantity are stated, followed by its biological significance. Practical techniques for measurement are given, along with pitfalls and examples of clinical applications. This second edition of this indispensable 'how to' manual of quantitative MR shows the MRI physicist and research clinician how to implement these techniques on an MRI scanner to understand more about the biological processes in the patient and physiological changes in healthy controls. Although focussed on the brain, most techniques are applicable to characterising tissue in the whole body. This book is essential reading for anyone who wants to use the gamut of modern quantitative MRI methods to measure the effects of disease, its progression, and its response to treatment. Features: The first edition was awarded the book prize for Radiology by the British Medical Association in 2004 Written by an authority in the field: Professor Tofts has an international reputation for quantification in MRI Gives specific ‘how to’ information for implementation of MRI measurement sequence techniques




Methods in Physical Chemistry


Book Description

Thanks to the progress made in instruments and techniques, the methods in physical chemistry have developed rapidly over the past few decades, making them increasingly valuable for scientists of many disciplines. These two must-have volumes meet the needs of the scientific community for a thorough overview of all the important methods currently used. As such, this work bridges the gap between standard textbooks and review articles, covering a large number of methods, as well as the motivation behind their use. A uniform approach is adopted throughout both volumes, while the critical comparison of the advantages and disadvantages of each method makes this a valuable reference for physical chemists and other scientists working with these techniques.




Quantitative MRI of the Brain


Book Description

Building on the success of the first edition of this book, the winner of the 2004 British Medical Association Radiology Medical Book Competition, Quantitative MRI of the Brain: Principles of Physical Measurement gives a unique view on how to use an MRI machine in a new way. Used as a scientific instrument it can make measurements of a myriad of physical and biological quantities in the human brain and body. For each small tissue voxel, non-invasive information monitors how tissue changes with disease and responds to treatment. The book opens with a detailed exposition of the principles of good practice in quantification, including fundamental concepts, quality assurance, MR data collection and analysis and improved study statistical power through minimised instrumental variation. There follow chapters on 14 specific groups of quantities: proton density, T1, T2, T2*, diffusion, advanced diffusion, magnetisation transfer, CEST, 1H and multi-nuclear spectroscopy, DCE-MRI, quantitative fMRI, arterial spin-labelling and image analysis, and finally a chapter on the future of quantification. The physical principles behind each quantity are stated, followed by its biological significance. Practical techniques for measurement are given, along with pitfalls and examples of clinical applications. This second edition of this indispensable 'how to' manual of quantitative MR shows the MRI physicist and research clinician how to implement these techniques on an MRI scanner to understand more about the biological processes in the patient and physiological changes in healthy controls. Although focussed on the brain, most techniques are applicable to characterising tissue in the whole body. This book is essential reading for anyone who wants to use the gamut of modern quantitative MRI methods to measure the effects of disease, its progression, and its response to treatment. Features: The first edition was awarded the book prize for Radiology by the British Medical Association in 2004 Written by an authority in the field: Professor Tofts has an international reputation for quantification in MRI Gives specific ‘how to’ information for implementation of MRI measurement sequence techniques




Magnetic Resonance Imaging


Book Description

New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.




Magnetic Resonance Imaging


Book Description

Magnetic Resonance Imaging: Physical and Biological Principles, 4th Edition offers comprehensive, well-illustrated coverage on this specialized subject at a level that does not require an extensive background in math and physics. It covers the fundamentals and principles of conventional MRI along with the latest fast imaging techniques and their applications. Beginning with an overview of the fundamentals of electricity and magnetism (Part 1), Parts 2 and 3 present an in-depth explanation of how MRI works. The latest imaging methods are presented in Parts 4 and 5, and the final section (Part 6) covers personnel and patient safety and administration issues. This book is perfect for student radiographers and practicing technologists preparing to take the MRI advanced certification exam offered by the American Registry of Radiologic Technologists (ARRT). "I would recommend it to anyone starting their MRI training and anyone trying to teach MRI to others." Reviewed by RAD Magazine, June 2015 Challenge questions at the end of each chapter help you assess your comprehension. Chapter outlines and objectives assist you in following the hierarchy of material in the text. Penguin boxes highlight key points in the book to help you retain the most important information and concepts in the text. NEW! Two MRI practice exams that mirror the test items in each ARRT category have been added to the end of the text to help you replicate the ARRT exam experience. NEW! Chapter on Partially Parallel Magnetic Resonance Imaging increases the comprehensiveness of the text. NEW! Updated key terms have been added to each chapter with an updated glossary defining each term.




Theory Of Quantitative Magnetic Resonance Imaging


Book Description

qMRI is a rapidly evolving scientific field of high current interest because it has the potential of radically changing the clinical and research practices of magnetic resonance imaging (MRI). This focuses solely on the theoretical aspects of qMRI, which are treated and analyzed at three different spatial scales, specifically: i) the quantum physics scale of individual spins; ii) the semi-classical physics scale of spin packets; and iii) the imaging scale of voxels. Topics are presented paying particular attention to theoretical unification and mathematical uniformity.







Magnetic Resonance Imaging


Book Description

Magnetic Resonance Imaging presents the fundamentals and principles of MRI, its capabilities and various applications. MRI can be a difficult subject because the physical principles underlying MRI are different from those of x-ray imaging. This text provides a clear and comprehensive explanation of the basic principles of conventional MRI and of the fast imaging techniques currently available. Over 450 images, photos, and line drawings accompany each discussion, clarifying difficult material. Easy-to-read, comprehensive material addresses six important content areas in an engaging style that does not require an extensive background in math or physics, but still goes beyond superficial coverage. Appendices provide more complex mathematical content in The Bloch Equations, as well as a list of web addresses for professional organizations, scientific associations, and other sources of information relevant to the topics in the book. New chapters on Chemical Shift and Magnetization Transfer (chapter 19), Perfusion Imaging (chapter 24), Diffusion Imaging (chapter 25) and Cardiac MR Imaging (chapter 26) keep up with the significant advances in functional MRI (fMRI) and cardiac imaging techniques. Over 200 new illustrations make difficult concepts easy to understand - all pulse sequence diagrams have been revised for greater consistency with current scientific literature, and new images and line drawings have been added throughout to complement the extensive revision in many chapters. New learning tools (outlines, objectives, and challenge questions) have been added to each chapter with answers in the back of the book that let readers assess what they should learn from each chapter, review concepts, and solidify their understanding of key concepts. Two practice exams with 122 questions each include the appropriate number of test items for each category of the ARRT exam. New images give readers a look at what the new imaging equipment and techniques can produce. Extensive revisions, especially of chapters on imaging systems, image formation, pulse sequences, and applications, provide new content and updates.