A Posteriori Error Analysis Via Duality Theory


Book Description

This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ([49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.




A Posteriori Error Analysis Via Duality Theory


Book Description

This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ([49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.




Advances in Applied Mathematics and Global Optimization


Book Description

The articles that comprise this distinguished annual volume for the Advances in Mechanics and Mathematics series have been written in honor of Gilbert Strang, a world renowned mathematician and exceptional person. Written by leading experts in complementarity, duality, global optimization, and quantum computations, this collection reveals the beauty of these mathematical disciplines and investigates recent developments in global optimization, nonconvex and nonsmooth analysis, nonlinear programming, theoretical and engineering mechanics, large scale computation, quantum algorithms and computation, and information theory.




Recent Advances in Contact Mechanics


Book Description

Contact mechanics is an active research area with deep theoretical and numerical roots. The links between nonsmooth analysis and optimization with mechanics have been investigated intensively during the last decades, especially in Europe. The study of complementarity problems, variational -, quasivariational- and hemivariational inequalities arising in contact mechanics and beyond is a hot topic for interdisciplinary research and cooperation. The needs of industry for robust solution algorithms suitable for large scale applications and the regular updates of the respective elements in major commercial computational mechanics codes, demonstrate that this interaction is not restricted to the academic environment. The contributions of this book have been selected from the participants of the CMIS 2009 international conference which took place in Crete and continued a successful series of specialized contact mechanics conferences.




Plasticity


Book Description

This book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introduction to plasticity, the second part covering the mathematical analysis of the elasticity problem, and the third part devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. This revised and expanded edition includes material on single-crystal and strain-gradient plasticity. In addition, the entire book has been revised to make it more accessible to readers who are actively involved in computations but less so in numerical analysis. Reviews of earlier edition: “The authors have written an excellent book which can be recommended for specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory.” (ZAMM, 2002) “In summary, the book represents an impressive comprehensive overview of the mathematical approach to the theory and numerics of plasticity. Scientists as well as lecturers and graduate students will find the book very useful as a reference for research or for preparing courses in this field.” (Technische Mechanik) "The book is professionally written and will be a useful reference to researchers and students interested in mathematical and numerical problems of plasticity. It represents a major contribution in the area of continuum mechanics and numerical analysis." (Math Reviews)




Theoretical Numerical Analysis


Book Description

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scienti?c disciplines and a resurgence of interest in the modern as well as the cl- sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). Thedevelopmentofnewcoursesisanaturalconsequenceofahighlevelof excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and to encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Ma- ematical Sciences (AMS) series, which will focus on advanced textbooks and research-level monographs.




Spectral and High Order Methods for Partial Differential Equations


Book Description

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.




The Mathematical Theory of Finite Element Methods


Book Description

This is the third and yet further updated edition of a highly regarded mathematical text. Brenner develops the basic mathematical theory of the finite element method, the most widely used technique for engineering design and analysis. Her volume formalizes basic tools that are commonly used by researchers in the field but not previously published. The book is ideal for mathematicians as well as engineers and physical scientists. It can be used for a course that provides an introduction to basic functional analysis, approximation theory, and numerical analysis, while building upon and applying basic techniques of real variable theory. This new edition is substantially updated with additional exercises throughout and new chapters on Additive Schwarz Preconditioners and Adaptive Meshes.




Analysis and Approximation of Contact Problems with Adhesion or Damage


Book Description

Research into contact problems continues to produce a rapidly growing body of knowledge. Recognizing the need for a single, concise source of information on models and analysis of contact problems, accomplished experts Sofonea, Han, and Shillor carefully selected several models and thoroughly study them in Analysis and Approximation of Contact P




Uncertainty Quantification in Variational Inequalities


Book Description

Uncertainty Quantification (UQ) is an emerging and extremely active research discipline which aims to quantitatively treat any uncertainty in applied models. The primary objective of Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications is to present a comprehensive treatment of UQ in variational inequalities and some of its generalizations emerging from various network, economic, and engineering models. Some of the developed techniques also apply to machine learning, neural networks, and related fields. Features First book on UQ in variational inequalities emerging from various network, economic, and engineering models Completely self-contained and lucid in style Aimed for a diverse audience including applied mathematicians, engineers, economists, and professionals from academia Includes the most recent developments on the subject which so far have only been available in the research literature