A Primer in Econometric Theory


Book Description

A concise treatment of modern econometrics and statistics, including underlying ideas from linear algebra, probability theory, and computer programming. This book offers a cogent and concise treatment of econometric theory and methods along with the underlying ideas from statistics, probability theory, and linear algebra. It emphasizes foundations and general principles, but also features many solved exercises, worked examples, and code listings. After mastering the material presented, readers will be ready to take on more advanced work in different areas of quantitative economics and to understand papers from the econometrics literature. The book can be used in graduate-level courses on foundational aspects of econometrics or on fundamental statistical principles. It will also be a valuable reference for independent study. One distinctive aspect of the text is its integration of traditional topics from statistics and econometrics with modern ideas from data science and machine learning; readers will encounter ideas that are driving the current development of statistics and increasingly filtering into econometric methodology. The text treats programming not only as a way to work with data but also as a technique for building intuition via simulation. Many proofs are followed by a simulation that shows the theory in action. As a primer, the book offers readers an entry point into the field, allowing them to see econometrics as a whole rather than as a profusion of apparently unrelated ideas.




A Primer in Econometric Theory


Book Description

A concise treatment of modern econometrics and statistics, including underlying ideas from linear algebra, probability theory, and computer programming. This book offers a cogent and concise treatment of econometric theory and methods along with the underlying ideas from statistics, probability theory, and linear algebra. It emphasizes foundations and general principles, but also features many solved exercises, worked examples, and code listings. After mastering the material presented, readers will be ready to take on more advanced work in different areas of quantitative economics and to understand papers from the econometrics literature. The book can be used in graduate-level courses on foundational aspects of econometrics or on fundamental statistical principles. It will also be a valuable reference for independent study. One distinctive aspect of the text is its integration of traditional topics from statistics and econometrics with modern ideas from data science and machine learning; readers will encounter ideas that are driving the current development of statistics and increasingly filtering into econometric methodology. The text treats programming not only as a way to work with data but also as a technique for building intuition via simulation. Many proofs are followed by a simulation that shows the theory in action. As a primer, the book offers readers an entry point into the field, allowing them to see econometrics as a whole rather than as a profusion of apparently unrelated ideas.




A Primer for Spatial Econometrics


Book Description

This book aims at meeting the growing demand in the field by introducing the basic spatial econometrics methodologies to a wide variety of researchers. It provides a practical guide that illustrates the potential of spatial econometric modelling, discusses problems and solutions and interprets empirical results.




An Introduction to Econometric Theory


Book Description

A guide to economics, statistics and finance that explores the mathematical foundations underling econometric methods An Introduction to Econometric Theory offers a text to help in the mastery of the mathematics that underlie econometric methods and includes a detailed study of matrix algebra and distribution theory. Designed to be an accessible resource, the text explains in clear language why things are being done, and how previous material informs a current argument. The style is deliberately informal with numbered theorems and lemmas avoided. However, very few technical results are quoted without some form of explanation, demonstration or proof. The author — a noted expert in the field — covers a wealth of topics including: simple regression, basic matrix algebra, the general linear model, distribution theory, the normal distribution, properties of least squares, unbiasedness and efficiency, eigenvalues, statistical inference in regression, t and F tests, the partitioned regression, specification analysis, random regressor theory, introduction to asymptotics and maximum likelihood. Each of the chapters is supplied with a collection of exercises, some of which are straightforward and others more challenging. This important text: Presents a guide for teaching econometric methods to undergraduate and graduate students of economics, statistics or finance Offers proven classroom-tested material Contains sets of exercises that accompany each chapter Includes a companion website that hosts additional materials, solution manual and lecture slides Written for undergraduates and graduate students of economics, statistics or finance, An Introduction to Econometric Theory is an essential beginner’s guide to the underpinnings of econometrics.




A Guide to Econometrics


Book Description

Dieses etwas andere Lehrbuch bietet keine vorgefertigten Rezepte und Problemlösungen, sondern eine kritische Diskussion ökonometrischer Modelle und Methoden: voller überraschender Fragen, skeptisch, humorvoll und anwendungsorientiert. Sein Erfolg gibt ihm Recht.




Complete and Incomplete Econometric Models


Book Description

Econometric models are widely used in the creation and evaluation of economic policy in the public and private sectors. But these models are useful only if they adequately account for the phenomena in question, and they can be quite misleading if they do not. In response, econometricians have developed tests and other checks for model adequacy. All of these methods, however, take as given the specification of the model to be tested. In this book, John Geweke addresses the critical earlier stage of model development, the point at which potential models are inherently incomplete. Summarizing and extending recent advances in Bayesian econometrics, Geweke shows how simple modern simulation methods can complement the creative process of model formulation. These methods, which are accessible to economics PhD students as well as to practicing applied econometricians, streamline the processes of model development and specification checking. Complete with illustrations from a wide variety of applications, this is an important contribution to econometrics that will interest economists and PhD students alike.




Economic Dynamics, second edition


Book Description

The second edition of a rigorous and example-driven introduction to topics in economic dynamics that emphasizes techniques for modeling dynamic systems. This text provides an introduction to the modern theory of economic dynamics, with emphasis on mathematical and computational techniques for modeling dynamic systems. Written to be both rigorous and engaging, the book shows how sound understanding of the underlying theory leads to effective algorithms for solving real-world problems. The material makes extensive use of programming examples to illustrate ideas, bringing to life the abstract concepts in the text. Key topics include algorithms and scientific computing, simulation, Markov models, and dynamic programming. Part I introduces fundamentals and part II covers more advanced material. This second edition has been thoroughly updated, drawing on recent research in the field. New for the second edition: “Programming-language agnostic” presentation using pseudocode. New chapter 1 covering conceptual issues concerning Markov chains such as ergodicity and stability. New focus in chapter 2 on algorithms and techniques for program design and high-performance computing. New focus on household problems rather than optimal growth in material on dynamic programming. Solutions to many exercises, code, and other resources available on a supplementary website.




The Economics of Contracts


Book Description

A concise introduction to the theory of contracts, emphasizing basic tools that allow the reader to understand the main theoretical models; revised and updated throughout for this edition.




Principles of Econometrics


Book Description

This textbook makes learning the basic principles of econometrics easy for all undergraduate and graduate students of economics. It takes the readers step-by-step from introduction to understanding, first introducing the basic statistical tools like concepts of probability, statistical distributions, and hypothesis tests, and then going on to explain the two variable linear regression models along with certain additional tools like use of dummy variables, various data transformations amongst others. The most innovative feature of this textbook is that it familiarizes students with the role of R, which is a flexible and popular programming language. With its help, the student will be able to implement a linear regression model and deal with the associated problems with substantial confidence.




Modeling Ordered Choices


Book Description

It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.