Advances in High Temperature Gas Cooled Reactor Fuel Technology


Book Description

This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.




Nuclear Waste Conditioning


Book Description




State-of-the-art Report on the Progress of Nuclear Fuel Cycle Chemistry


Book Description

The implementation of advanced nuclear systems requires that new technologies associated with the back end of the fuel cycle are developed. The separation of minor actinides from other fuel components is one of the advanced concepts being studied to help close the nuclear fuel cycle and to improve the long-term effects on the performance of geological repositories. Separating spent fuel elements and subsequently converting them through transmutation into short-lived nuclides should considerably reduce the longterm risks associated with nuclear power generation.




Magnetic Fusion Technology


Book Description

Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.




Pellet-clad Interaction in Water Reactor Fuels


Book Description

This publication sets out the findings of an international seminar, held in Aix-en-Provence, France in March 2004, which considered recent progress in the field of pellet-clad interaction in light water reactor fuels. It also reviews current understanding of relevant phenomena and their impact on the nuclear fuel rod under the widest possible conditions, and about both uranium-oxide and mixed-oxide fuels.