Ground Water Reactive Transport Model: Cover Page; 03 REVISED eBooks End User License Agreement-Website; 04 Contents; 05 Foreword_czheng; 06 Preface; 07 Contributors; 08 Chapter 1_Yeh et al_HYDROGEOCHEMA; 09 Chapter 2_Wheeler et al_IPARS-FINAL; 10 Chapter 3_Xu et al-revised-_TOUGHREACT; 11 Chapter 4_Clement et al_RT3D; 12 Chapter 5_White et al_STOMP-ECKEChem; 13 Chapter 6_Hammond et al_PFLOTRAN; 14 Chapter 7_ Samper et al_CORE2D V4; 15 Chapter 8_ Mayer et al_MIN3P; 16 Chapter 9_ Hao et al_NUFT; 17 Index


Book Description

Ground water reactive transport models are useful to assess and quantify contaminant precipitation, absorption and migration in subsurface media. Many ground water reactive transport models available today are characterized by varying complexities, strengths, and weaknesses. Selecting accurate, efficient models can be a challenging task. This ebook addresses the needs, issues and challenges relevant to selecting a ground water reactive transport model to evaluate natural attenuation and alternative remediation schemes. It should serve as a handy guide for water resource managers seeking to ach.




Reactive Transport Modeling


Book Description

Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.







Annual Report


Book Description




Groundwater Reactive Transport Models


Book Description

Ground water reactive transport models are useful to assess and quantify contaminant precipitation, absorption and migration in subsurface media. Many ground water reactive transport models available today are characterized by varying complexities, strengths, and weaknesses. Selecting accurate, efficient models can be a challenging task. This book addresses the needs, issues and challenges relevant to selecting a ground water reactive transport model to evaluate natural attenuation and alternative remediation schemes. It should serve as a handy guide for water resource managers seeking to achieve economically feasible results.




Reactive Transport Modeling


Book Description

Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.




Reactive Transport in Porous Media


Book Description

Volume 34 of Reviews in Mineralogy focuses on methods to describe the extent and consequences of reactive flow and transport in natural subsurface systems. Since the field of reactive transport within the Earth Sciences is a highly multidisciplinary area of research, including geochemistry, geology, physics, chemistry, hydrology, and engineering, this book is an attempt to some extent bridge the gap between these different disciplines. This volume contains the contributions presented at a short course held in Golden, Colorado, October 25-27, 1996 in conjunction with the Mineralogical Society of America's (MSA) Annual Meeting with the Geological Society of America in Denver, Colorado.







Modeling Groundwater Flow and Contaminant Transport


Book Description

In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use, and contamination. To face the challenge, good planning and management practices are needed. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface. The purpose of this book is to construct conceptual and mathematical models that can provide the information required for making decisions associated with the management of groundwater resources, and the remediation of contaminated aquifers. The basic approach of this book is to accurately describe the underlying physics of groundwater flow and solute transport in heterogeneous porous media, starting at the microscopic level, and to rigorously derive their mathematical representation at the macroscopic levels. The well-posed, macroscopic mathematical models are formulated for saturated, single phase flow, as well as for unsaturated and multiphase flow, and for the transport of single and multiple chemical species. Numerical models are presented and computer codes are reviewed, as tools for solving the models. The problem of seawater intrusion into coastal aquifers is examined and modeled. The issues of uncertainty in model input data and output are addressed. The book concludes with a chapter on the management of groundwater resources. Although one of the main objectives of this book is to construct mathematical models, the amount of mathematics required is kept minimal.




Natural and Engineered Clay Barriers


Book Description

Clays are used as barriers for the isolation of landfills and contaminated sites. They are envisioned as long-term storage media for hazardous materials and radioactive wastes, and as seals in the case of geological CO2 sequestration or energy storage. Clay properties greatly influence the integrity, efficiency, and safety of these applications. Natural and Engineered Clay Barriers provides a clear view of the fundamental properties of clay materials and how these properties affect their engineering applications. This volume focuses on how the mass transfer properties (hydraulic permeability, gas fluxes, molecular diffusion, semi-permeable membrane properties), geochemical reactivity (adsorption, dissolution) and mechanical properties of clay barriers at the macroscale are influenced by phenomena that occur at clay mineral - water interfaces. - Examines clay properties from the molecular to the macroscopic scale - Addresses experimental and modeling issues - Authored by experts in the properties of clay barriers