Distributed Shared Memory


Book Description

The papers present in this text survey both distributed shared memory (DSM) efforts and commercial DSM systems. The book discusses relevant issues that make the concept of DSM one of the most attractive approaches for building large-scale, high-performance multiprocessor systems. The authors provide a general introduction to the DSM field as well as a broad survey of the basic DSM concepts, mechanisms, design issues, and systems. The book concentrates on basic DSM algorithms, their enhancements, and their performance evaluation. In addition, it details implementations that employ DSM solutions at the software and the hardware level. This guide is a research and development reference that provides state-of-the art information that will be useful to architects, designers, and programmers of DSM systems.




UPC


Book Description

This is the first book to explain the language Unified Parallel C and its use. Authors El-Ghazawi, Carlson, and Sterling are among the developers of UPC, with close links with the industrial members of the UPC consortium. Their text covers background material on parallel architectures and algorithms, and includes UPC programming case studies. This book represents an invaluable resource for the growing number of UPC users and applications developers. More information about UPC can be found at: http://upc.gwu.edu/ An Instructor Support FTP site is available from the Wiley editorial department.




Software for Parallel Computation


Book Description

Proceedings of the NATO Advanced Workshop on Software for Parallel Computation, held at Cetraro, Cosenza, Italy, June 22-26, 1992




Scalable Shared Memory Multiprocessors


Book Description

Mathematics of Computing -- Parallelism.




A Primer on Memory Consistency and Cache Coherence


Book Description

Many modern computer systems, including homogeneous and heterogeneous architectures, support shared memory in hardware. In a shared memory system, each of the processor cores may read and write to a single shared address space. For a shared memory machine, the memory consistency model defines the architecturally visible behavior of its memory system. Consistency definitions provide rules about loads and stores (or memory reads and writes) and how they act upon memory. As part of supporting a memory consistency model, many machines also provide cache coherence protocols that ensure that multiple cached copies of data are kept up-to-date. The goal of this primer is to provide readers with a basic understanding of consistency and coherence. This understanding includes both the issues that must be solved as well as a variety of solutions. We present both high-level concepts as well as specific, concrete examples from real-world systems. This second edition reflects a decade of advancements since the first edition and includes, among other more modest changes, two new chapters: one on consistency and coherence for non-CPU accelerators (with a focus on GPUs) and one that points to formal work and tools on consistency and coherence.




Distributed and Cloud Computing


Book Description

Distributed and Cloud Computing: From Parallel Processing to the Internet of Things offers complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing. It is the first modern, up-to-date distributed systems textbook; it explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Topics covered by this book include: facilitating management, debugging, migration, and disaster recovery through virtualization; clustered systems for research or ecommerce applications; designing systems as web services; and social networking systems using peer-to-peer computing. The principles of cloud computing are discussed using examples from open-source and commercial applications, along with case studies from the leading distributed computing vendors such as Amazon, Microsoft, and Google. Each chapter includes exercises and further reading, with lecture slides and more available online. This book will be ideal for students taking a distributed systems or distributed computing class, as well as for professional system designers and engineers looking for a reference to the latest distributed technologies including cloud, P2P and grid computing. - Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing - Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more - Explains how to use virtualization to facilitate management, debugging, migration, and disaster recovery - Designed for undergraduate or graduate students taking a distributed systems course—each chapter includes exercises and further reading, with lecture slides and more available online




Fundamentals of Parallel Multicore Architecture


Book Description

Although multicore is now a mainstream architecture, there are few textbooks that cover parallel multicore architectures. Filling this gap, Fundamentals of Parallel Multicore Architecture provides all the material for a graduate or senior undergraduate course that focuses on the architecture of multicore processors. The book is also useful as a ref




Distributed Computing in Java 9


Book Description

Explore the power of distributed computing to write concurrent, scalable applications in Java About This Book Make the best of Java 9 features to write succinct code Handle large amounts of data using HPC Make use of AWS and Google App Engine along with Java to establish a powerful remote computation system Who This Book Is For This book is for basic to intermediate level Java developers who is aware of object-oriented programming and Java basic concepts. What You Will Learn Understand the basic concepts of parallel and distributed computing/programming Achieve performance improvement using parallel processing, multithreading, concurrency, memory sharing, and hpc cluster computing Get an in-depth understanding of Enterprise Messaging concepts with Java Messaging Service and Web Services in the context of Enterprise Integration Patterns Work with Distributed Database technologies Understand how to develop and deploy a distributed application on different cloud platforms including Amazon Web Service and Docker CaaS Concepts Explore big data technologies Effectively test and debug distributed systems Gain thorough knowledge of security standards for distributed applications including two-way Secure Socket Layer In Detail Distributed computing is the concept with which a bigger computation process is accomplished by splitting it into multiple smaller logical activities and performed by diverse systems, resulting in maximized performance in lower infrastructure investment. This book will teach you how to improve the performance of traditional applications through the usage of parallelism and optimized resource utilization in Java 9. After a brief introduction to the fundamentals of distributed and parallel computing, the book moves on to explain different ways of communicating with remote systems/objects in a distributed architecture. You will learn about asynchronous messaging with enterprise integration and related patterns, and how to handle large amount of data using HPC and implement distributed computing for databases. Moving on, it explains how to deploy distributed applications on different cloud platforms and self-contained application development. You will also learn about big data technologies and understand how they contribute to distributed computing. The book concludes with the detailed coverage of testing, debugging, troubleshooting, and security aspects of distributed applications so the programs you build are robust, efficient, and secure. Style and approach This is a step-by-step practical guide with real-world examples.




Shared-Memory Synchronization


Book Description

From driving, flying, and swimming, to digging for unknown objects in space exploration, autonomous robots take on varied shapes and sizes. In part, autonomous robots are designed to perform tasks that are too dirty, dull, or dangerous for humans. With nontrivial autonomy and volition, they may soon claim their own place in human society. These robots will be our allies as we strive for understanding our natural and man-made environments and build positive synergies around us. Although we may never perfect replication of biological capabilities in robots, we must harness the inevitable emergence of robots that synchronizes with our own capacities to live, learn, and grow. This book is a snapshot of motivations and methodologies for our collective attempts to transform our lives and enable us to cohabit with robots that work with and for us. It reviews and guides the reader to seminal and continual developments that are the foundations for successful paradigms. It attempts to demystify the abilities and limitations of robots. It is a progress report on the continuing work that will fuel future endeavors. Table of Contents: Part I: Preliminaries/Agency, Motion, and Anatomy/Behaviors / Architectures / Affect/Sensors / Manipulators/Part II: Mobility/Potential Fields/Roadmaps / Reactive Navigation / Multi-Robot Mapping: Brick and Mortar Strategy / Part III: State of the Art / Multi-Robotics Phenomena / Human-Robot Interaction / Fuzzy Control / Decision Theory and Game Theory / Part IV: On the Horizon / Applications: Macro and Micro Robots / References / Author Biography / Discussion




DISTRIBUTED OPERATING SYSTEMS


Book Description

The highly praised book in communications networking from IEEE Press, now available in the Eastern Economy Edition.This is a non-mathematical introduction to Distributed Operating Systems explaining the fundamental concepts and design principles of this emerging technology. As a textbook for students and as a self-study text for systems managers and software engineers, this book provides a concise and an informal introduction to the subject.