Differential Geometry of Curves and Surfaces


Book Description

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.




A Treatise on the Differential Geometry of Curves and Surfaces


Book Description

A Treatise on the Differential Geometry of Curves and Surfaces by Luther Pfahler Eisenhart, first published in 1909, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.




A Treatise on the Differential Geometry of Curves and Surfaces


Book Description

A Treatise on the Differential Geometry of Curves and Surfaces by Luther Pfahler Eisenhart, first published in 1909, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.




Modern Differential Geometry of Curves and Surfaces with Mathematica, Third Edition


Book Description

Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.




Differential Geometry - Proceedings Of The Symposium In Honor Of Prof Su Buchin On His 90th Birthday


Book Description

The main topics covered in this volume are global differential geometry and its application to physics. Recent results in many areas are presented, including Yang-Mills fields, harmonic maps, geometry of submanifolds, spectral geometry, complex geometry and soliton aspects of nonlinear PDE arising from geometry and mathematical physics.




Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition


Book Description

The Second Edition combines a traditional approach with the symbolic manipulation abilities of Mathematica to explain and develop the classical theory of curves and surfaces. You will learn to reproduce and study interesting curves and surfaces - many more than are included in typical texts - using computer methods. By plotting geometric objects and studying the printed result, teachers and students can understand concepts geometrically and see the effect of changes in parameters. Modern Differential Geometry of Curves and Surfaces with Mathematica explains how to define and compute standard geometric functions, for example the curvature of curves, and presents a dialect of Mathematica for constructing new curves and surfaces from old. The book also explores how to apply techniques from analysis. Although the book makes extensive use of Mathematica, readers without access to that program can perform the calculations in the text by hand. While single- and multi-variable calculus, some linear algebra, and a few concepts of point set topology are needed to understand the theory, no computer or Mathematica skills are required to understand the concepts presented in the text. In fact, it serves as an excellent introduction to Mathematica, and includes fully documented programs written for use with Mathematica. Ideal for both classroom use and self-study, Modern Differential Geometry of Curves and Surfaces with Mathematica has been tested extensively in the classroom and used in professional short courses throughout the world.




Special Publication


Book Description




The Washingtons. Volume 4, Part 1


Book Description

This is the fourth volume of Dr. Justin Glenn’s comprehensive history that traces the “Presidential line” of the Washingtons. Volume One began with the immigrant John Washington, who settled in Westmoreland Co., Va., in 1657, married Anne Pope, and became the great-grandfather of President George Washington. It continued the record of their descendants for a total of seven generations. Volume Two highlighted notable members of the next eight generations of John and Anne Washington’s descendants, including General George S. Patton, author Shelby Foote, and actor Lee Marvin. Volume Three traced the ancestry of the early Virginia members of this “Presidential Branch” back in time to the aristocracy and nobility of England and continental Europe. Volume Four resumes the family history where Volume One ended. It presents Generation Eight of the immigrant John Washington’s descendants, containing nearly 7,000 descendants. Future volumes will trace generations nine through fifteen, making a total of over 63,000 descendants. Although structured in a genealogical format for the sake of clarity, this is no bare bones genealogy but a true family history with over 1,200 detailed biographical narratives. These in turn strive to convey the greatness of the family that produced not only The Father of His Country but many others, great and humble, who struggled to build that country. Volume Four, Part One covers the descendants of the immigrant John Washington’s child Lawrence Washington. Volume Four, Part Two covers the descendants of the Immigrant’s children John Washington, Jr., and Anne (Washington) Wright.




An Introduction to Differential Geometry


Book Description

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.