A Course in Universal Algebra


Book Description

Universal algebra has enjoyed a particularly explosive growth in the last twenty years, and a student entering the subject now will find a bewildering amount of material to digest. This text is not intended to be encyclopedic; rather, a few themes central to universal algebra have been developed sufficiently to bring the reader to the brink of current research. The choice of topics most certainly reflects the authors' interests. Chapter I contains a brief but substantial introduction to lattices, and to the close connection between complete lattices and closure operators. In particular, everything necessary for the subsequent study of congruence lattices is included. Chapter II develops the most general and fundamental notions of uni versal algebra-these include the results that apply to all types of algebras, such as the homomorphism and isomorphism theorems. Free algebras are discussed in great detail-we use them to derive the existence of simple algebras, the rules of equational logic, and the important Mal'cev conditions. We introduce the notion of classifying a variety by properties of (the lattices of) congruences on members of the variety. Also, the center of an algebra is defined and used to characterize modules (up to polynomial equivalence). In Chapter III we show how neatly two famous results-the refutation of Euler's conjecture on orthogonal Latin squares and Kleene's character ization of languages accepted by finite automata-can be presented using universal algebra. We predict that such "applied universal algebra" will become much more prominent.







Principia Mathematica


Book Description




Universal Algebra


Book Description

Universal Algebra has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well selected additional bibliography of over 1250 papers and books which makes this an indispensable new edition for students, faculty, and workers in the field.




Universal Algebra


Book Description

The present book was conceived as an introduction for the user of universal algebra, rather than a handbook for the specialist, but when the first edition appeared in 1965, there were practically no other books entir~ly devoted to the subject, whether introductory or specialized. Today the specialist in the field is well provided for, but there is still a demand for an introduction to the subject to suit the user, and this seemed to justify a reissue of the book. Naturally some changes have had to be made; in particular, I have corrected all errors that have been brought to my notice. Besides errors, some obscurities in the text have been removed and the references brought up to date. I should like to express my thanks to a number of correspondents for their help, in particular C. G. d'Ambly, W. Felscher, P. Goralcik, P. J. Higgins, H.-J. Hoehnke, J. R. Isbell, A. H. Kruse, E. J. Peake, D. Suter, J. S. Wilson. But lowe a special debt to G. M. Bergman, who has provided me with extensive comments. particularly on Chapter VII and the supplementary chapters. I have also con sulted reviews of the first edition, as well as the Italian and Russian translations.







Elements of Algebra


Book Description




Symbols, Impossible Numbers, and Geometric Entanglements


Book Description

Symbols, Impossible Numbers, and Geometric Entanglements is the first history of the development and reception of algebra in early modern England and Scotland. Not primarily a technical history, this book analyzes the struggles of a dozen British thinkers to come to terms with early modern algebra, its symbolical style, and negative and imaginary numbers. Professor Pycior uncovers these thinkers as a "test-group" for the symbolic reasoning that would radically change not only mathematics but also logic, philosophy, and language studies. The book also shows how pedagogical and religious concerns shaped the British debate over the relative merits of algebra and geometry. The first book to position algebra firmly in the Scientific Revolution and pursue Newton the algebraist, it highlights Newton's role in completing the evolution of algebra from an esoteric subject into a major focus of British mathematics. Other thinkers covered include Oughtred, Harriot, Wallis, Hobbes, Barrow, Berkeley, and MacLaurin.




An Introduction to Mathematics


Book Description

Concise volume for general students by prominent philosopher and mathematician explains what math is and does, and how mathematicians do it. "Lucid and cogent ... should delight you." — The New York Times. 1911 edition.