A Tribute to Emil Grosswald: Number Theory and Related Analysis


Book Description

Emil Grosswald was a mathematician of great accomplishment and remarkable breadth of vision. This volume pays tribute to the span of his mathematical interests, which is reflected in the wide range of papers collected here. With contributions by leading contemporary researchers in number theory, modular functions, combinatorics, and related analysis, this book will interest graduate students and specialists in these fields. The high quality of the articles and their close connection to current research trends make this volume a must for any mathematics library.




A Tribute to Emil Grosswald


Book Description




A Tribute to Emil Grosswald


Book Description

Emil Grosswald was a mathematician of great accomplishment and remarkabel breadth of vision. This volume pays tribute to the span of his mathematical interests, which is reflected in the wide range of papers collected here, from leading contemporary researchers in number theory, modular functions, combinatorics, and related analysis.




Geometry of the Spectrum


Book Description

Spectral geometry runs through much of contemporary mathematics, drawing on and stimulating developments in such diverse areas as Lie algebras, graph theory, group representation theory, and Riemannian geometry. The aim is to relate the spectrum of the Laplace operator or its graph-theoretic analogue, the adjacency matrix, to underlying geometric and topological data. This volume brings together papers presented at the AMS-IMS-SIAM Joint Summer Research Conference on Spectral Geometry, held in July 1993 at the University of Washington in Seattle. With contributions from some of the top experts in the field, this book presents an excellent overview of current developments in spectral geometry.




Lie Algebras, Cohomology, and New Applications to Quantum Mechanics


Book Description

This volume, which contains a good balance of research and survey papers, presents at look at some of the current development in this extraordinarily rich and vibrant area.




Recent Developments in the Inverse Galois Problem


Book Description

This book contains the refereed proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Recent Developments in the Inverse Galois Problem, held in July 1993 at the University of Washington, Seattle. A new review of Serre's Topics in Galois Theory serves as a starting point. The book describes the latest research on explicit presentation of the absolute Galois group of the rationals. Containing the first appearance of generalizations of modular curves, the book presents applications that demonstrate the full scope of the Inverse Galois Problem. In particular, the papers collected here show the ubiquity of the applications of the Inverse Galois Problem and its compelling significance. The book will serve as a guide to progress on the Inverse Galois Problem and as an aid in using this work in other areas of mathematics. This includes coding theory and other finite field applications. Group theory and a first course in algebraic curves are sufficient for understanding many papers in the volume. Graduate students will find this an excellent reference to current research, as it contains a list of problems appropriate for thesis material in arithmetic geometry, algebraic number theory, and group theory.




Banach Spaces


Book Description

This volume contains the proceedings of the International Workshop on Banach Space Theory, held at the Universidad de Los Andes in Merida, Venezuela in January 1992. These refereed papers contain the newest results in Banach space theory, real or complex function spaces, and nonlinear functional analysis. There are several excellent survey papers, including ones on homogeneous Banach spaces and applications of probability inequalities, in addition to an important research paper on the distortion problem. This volume is notable for the breadth of the mathematics presented.




Index Theory and Operator Algebras


Book Description

This collection of papers by leading researchers provides a broad picture of current research directions in index theory. Based on lectures presented at the NSF-CBMS Regional Conference on $K$-Homology and Index Theory, held in August, 1991 at the University of Colorado at Boulder, the book provides both a careful exposition of new perspectives in classical index theory and an introduction to currently active areas of the field. Presented here are two new proofs of the classical Atiyah-Singer Index Theorem, as well as index theorems for manifolds with boundary and open manifolds. Index theory for semi-simple $p$-adic groups and the geometry of discrete groups are also discussed. Throughout the book, the application of operator algebras emerges as a central theme. Aimed at graduate students and researchers, this book is suitable as a text for an advanced graduate course on index theory.




The Penrose Transform and Analytic Cohomology in Representation Theory


Book Description

This book contains refereed papers presented at the AMS-IMS-SIAM Summer Research Conference on the Penrose Transform and Analytic Cohomology in Representation Theory held in the summer of 1992 at Mount Holyoke College. The conference brought together some of the top experts in representation theory and differential geometry. One of the issues explored at the conference was the fact that various integral transforms from representation theory, complex integral geometry, and mathematical physics appear to be instances of the same general construction, which is sometimes called the ``Penrose transform''. There is considerable scope for further research in this area, and this book would serve as an excellent introduction.




Mapping Class Groups and Moduli Spaces of Riemann Surfaces


Book Description

The study of mapping class groups and moduli spaces of compact Riemann surfaces is currently a central topic in topology, algebraic geometry, and conformal field theory. This book contains proceedings from two workshops held in the summer of 1991, one at the University of G\"ottingen and the other at the University of Washington at Seattle. The papers gathered here represent diverse approaches and contain several important new results. With both research and survey articles, the book appeals to mathematicians and physicists.