Access in Nanoporous Materials


Book Description

This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, and engineering, with length scales ranging from Ångstromsup to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area ofcurrent interest and brings together leading experts to give an up-to-date discussion of their work and the work ofothers. Each article contains enough references that the interested reader can accesstherelevant literature. Thanks aregiven to the Center forFundamental Materials Research atMichigan State University forsupportingthis series. M.F. Thorpe, Series Editor E-mail: [email protected] EastLansing,Michigan, September, 1995 PREFACE This book records selected papers given at an interdisciplinary Symposium on Access in Nanoporous Materials held in Lansing, Michigan, on June 7-9, 1995. Broad interest in the synthesis of ordered materials with pore sizes in the 1.0-10 nm range was clearly manifested in the 64 invited and contributed papers presented by workers in the formal fields of chemistry, physics, and engineering. The intent of the symposium was to bring together a small number ofleading researchers within complementary disciplines to share in the diversity of approaches to nanoporous materials synthesis and characterization.




Nanoporous Materials: Science And Engineering


Book Description

Porous materials are of scientific and technological importance because of the presence of voids of controllable dimensions at the atomic, molecular, and nanometer scales, enabling them to discriminate and interact with molecules and clusters. Interestingly the big deal about this class of materials is about the “nothingness” within — the pore space. International Union of Pure and Applied Chemistry (IUPAC) classifies porous materials into three categories — micropores of less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores of greater than 50 nm. In this book, nanoporous materials are defined as those porous materials with pore diameters less than 100 nm.Over the last decade, there has been an ever increasing interest and research effort in the synthesis, characterization, functionalization, molecular modeling and design of nanoporous materials. The main challenges in research include the fundamental understanding of structure-property relations and tailor-design of nanostructures for specific properties and applications. Research efforts in this field have been driven by the rapid growing emerging applications such as biosensor, drug delivery, gas separation, energy storage and fuel cell technology, nanocatalysis and photonics. These applications offer exciting new opportunities for scientists to develop new strategies and techniques for the synthesis and applications of these materials.This book provides a series of systematic reviews of the recent developments in nanoporous materials. It covers the following topics: (1) synthesis, processing, characterization and property evaluation; (2) functionalization by physical and/or chemical treatments; (3) experimental and computational studies on fundamental properties, such as catalytic effects, transport and adsorption, molecular sieving and biosorption; (4) applications, including photonic devices, catalysis, environmental pollution control, biological molecules separation and isolation, sensors, membranes, hydrogen and energy storage, etc./a




Nanoporous Materials


Book Description

In the past two decades, the field of nanoporous materials has undergone significant developments. As these materials possess high specific surface areas, well-defined pore sizes, and functional sites, they show a great diversity of applications such as molecular adsorption/storage and separation, sensing, catalysis, energy storage and conversion,




Nanoporous Materials III


Book Description

Nanoporous Materials III contains the invited lectures and peer-reviewed oral and poster contributions to be presented at the 3rd Conference on Nanoporous Materials, which will be hosted in Ottawa, Canada, June 2002. The work covers complementary approaches to and recent advances in the field of nanostructured materials with pore sizes larger than 1nm, such as periodic mesoporous molecular sieves M41S and FSM16 and related materials including clays, carbon molecular sieves, colloidal crystal templated organic and inorganic materials, porous polymers and sol gels. The broad range of topics covered in relation to the synthesis and characterization of ordered mesoporous materials are of great importance for advanced adsorption, catalytic and separation processes as well as the development of nanotechnology. The contents of this title are based on topics to be discussed by invited lecturers, which deal with periodic mesoporous organosilicas, stability and catalytic activity of aluminosilicate mesostructures, electron microscopy studies of ordered materials, imprinted polymers and highly porous metal-organic frameworks. The other contributions deal with tailoring the surface and structural properties of nanoporous materials, giving a detailed characterization as well as demonstrating their usefulness for advanced adsorption and catalytic applications.




Diffusion in Nanoporous Materials, 2 Volumes


Book Description

Atoms and molecules in all states of matter are subject to continuous irregular movement. This process, referred to as diffusion, is among the most general and basic phenomena in nature and determines the performance of many technological processes. This book provides an introduction to the fascinating world of diffusion in microporous solids. Jointly written by three well-known researchers in this field, it presents a coherent treatise, rather than a compilation of separate review articles, covering the theoretical fundamentals, molecular modeling, experimental observation and technical applications. Based on the book Diffusion in Zeolites and other Microporous Solids, originally published in 1992, it illustrates the remarkable speed with which this field has developed since that time. Specific topics include: new families of nanoporous materials, micro-imaging and single-particle tracking, direct monitoring of transient profiles by interference microscopy, single-file diffusion and new approaches to molecular modeling.




Adsorption and Diffusion in Nanoporous Materials


Book Description

Offering a materials science point of view, the author covers the theory and practice of adsorption and diffusion applied to gases in microporous crystalline, mesoporous ordered, and micro/mesoporous amorphous materials. Examples used include microporous and mesoporous molecular sieves, amorphous silica, and alumina and active carbons, akaganeites, prussian blue analogues, metal organic frameworks and covalent organic frameworks. The use of single component adsorption, diffusion in the characterization of the adsorbent surface, pore volume, pore size distribution, and the study of the parameters characterizing single component transport processes in porous materials are detailed.




Advances in Nanoporous Materials


Book Description

Advances in Nanoporous Materials is a collection of comprehensive reviews of lasting value to the field. The contributions cover all aspects of nanoporous materials, including their preparation and structure, post-synthetic modification, characterization and use in catalysis, adsorption/separation, and all other fields of potential application, e.g., membranes, host/guest chemistry, environmental protection, electrochemistry, sensors, and optical devices. "Nanoporous materials" comprise all kinds of porous solids that possess pores in the range from about 0.2 nm up to 50 nm, irrespective of their chemical composition, their origin (natural or synthetic), and their amorphous or crystalline nature. Typical examples are zeolites and zeolite-like materials (e.g., crystalline microporous aluminophosphates and their derivatives), mesoporous oxides such as silica, metal organic frameworks, pillared clays, porous carbons, and related materials. - State-of-the-art reviews keep coverage current - Broad scope provides a full topical overview - Contributions from renowned experts lend authority to the material




Nanoporous Materials II


Book Description

The first symposium on Access in Nanoporous Materials was held in Lansing, Michigan on June 7-9, 1995. The five years that have passed since that initial meeting have brought remarkable advances in all aspects of this growing family of materials. In particular, impressive progress has been achieved in the area of novel self-assembled mesoporous materials, their synthesis, characterization and applications. The supramolecular self-assembly of various inorganic and organic species into ordered mesostructures became a powerful method for synthesis of mesoporous molecular sieves of tailored framework composition, pore structure, pore size and desired surface functionality for advanced applications in such areas as separation, adsorption, catalysis, environmental cleanup and nanotechnology.In addition to mesostructured metal oxide molecular sieves prepared through supramolecular assembly pathways, clays, carbon molecular sieves, porous polymers, sol-gel and imprinted materials, as well as self-assembled organic and other zeolite-like materials, have captured the attention of materials researchers around the globe.The contents of the current volume present a sampling of more than 150 oral and poster papers delivered at the Symposium on Access in Nanoporous Materials II held in Banff, Alberta on May 25-30, 2000. About 70% of the papers are devoted to the synthesis of siliceous mesoporous molecular sieves, their modification, characterization and applications, which represent the current research trend in nanoporous materials. The remaining contributions provide some indications on the future developments in the area of non-siliceous molecular sieves and related materials. This book reflects the current trends and advances in this area, which will certainly attract the attention of materials chemists in the 21st century.




Modelling and Simulation in the Science of Micro- and Meso-Porous Materials


Book Description

Modelling and Simulation in the Science of Micro- and Meso-Porous Materials addresses significant developments in the field of micro- and meso-porous science. The book includes sections on Structure Modeling and Prediction, Synthesis, Nucleation and Growth, Sorption and Separation processes, Reactivity and Catalysis, and Fundamental Developments in Methodology to give a complete overview of the techniques currently utilized in this rapidly advancing field. It thoroughly addresses the major challenges in the field of microporous materials, including the crystallization mechanism of porous materials and rational synthesis of porous materials with controllable porous structures and compositions. New applications in emerging areas are also covered, including biomass conversion, C1 chemistry, and CO2 capture. - Authored and edited by experts in the field of micro- and meso-porous materials - Includes introductory material and background both on the science of microporous materials and on the techniques employed in contemporary modeling studies - Rigorous enough for scientists conducting related research, but also accessible to graduate students in chemistry, chemical engineering, and materials science




Nanofluid Flow in Porous Media


Book Description

Studies of fluid flow and heat transfer in a porous medium have been the subject of continuous interest for the past several decades because of the wide range of applications, such as geothermal systems, drying technologies, production of thermal isolators, control of pollutant spread in groundwater, insulation of buildings, solar power collectors, design of nuclear reactors, and compact heat exchangers, etc. There are several models for simulating porous media such as the Darcy model, Non-Darcy model, and non-equilibrium model. In porous media applications, such as the environmental impact of buried nuclear heat-generating waste, chemical reactors, thermal energy transport/storage systems, the cooling of electronic devices, etc., a temperature discrepancy between the solid matrix and the saturating fluid has been observed and recognized.