Acetylene and Its Polymers


Book Description

This Brief presents for the first time a detailed historical overview of the development of acetylene polymers, beginning with the initial discovery of acetylene in 1836 and continuing up through the 2000 Nobel Prize in Chemistry. The polymerization of acetylene is most commonly associated with polyacetylene, which was found to be conductive when treated with oxidizing agents such as Br2 or I2 in the mid‐to‐late 1970s. In fact, under the right conditions, oxidized polyacetylenes can exhibit conductivities into the metallic regime, thus providing the first example of an organic polymer exhibiting metallic conductivity. As a consequence, the 2000 Nobel Prize in Chemistry was awarded to Hideki Shirakawa, Alan MacDiarmid, and Alan Heeger for this pioneering research, the award citation reading “for the discovery and development of electrically conductive polymers.” Because of this, most incorrectly view polyacetylene, as well as conducting polymers in general, to originate in the 1970s. In this work, the author examines the polymerization of acetylene from early thermal polymerization studies to the ultimate production of the fully conjugated polyacetylene. Although true polyacetylene was not successfully produced until the 1950s by Giulio Natta, the polymerization of acetylene dates back to 1866 with the work of Marcellin Berthelot. These initial efforts were continued by a range of scientists to produce a polymeric material collectively given the name cuprene in 1900 by Paul Sabatier. Between the initial cuprene studies and the production of true polyacetylene, two related materials were also studied, usually referred to as polyenes and polyvinylenes. Although both of these materials could be thought of as forms of polyacetylene, neither was actually generated from the direct polymerization of acetylene. Readers will gain insight into the fact that polyacetylene and conducting organic polymers have a much longer history than commonly believed and involved the work of a significant number of Nobel Laureates.




Click Polymerization


Book Description

Click Polymerization has been edited by world renowned experts and provides an authoritative guide to this reaction type.




Polyacetylene


Book Description

Polyacetylene: Chemistry, Physics, and Material Science reviews the chemistry, physics, and material science of polyacetylene. Topics covered include polymerization and crystal structure of polyacetylene, isomerization, neutral defects, and solitons. Globular morphology and the effect of heat of polymerization on polyacetylene are also discussed, along with doping and chemical reactions of polyacetylene. This book is comprised of 12 chapters and begins with an introduction to a few basic principles of polymer chemistry and solid-state physics, followed by an overview of charge-transfer salts and conducting polymers other than polyacetylene and a historical background on polyacetylene and a general description of its properties. The next chapter gives a detailed treatment of polymerization, with particular reference to the mechanisms and kinetics of acetylene polymerization and direct determination of polyacetylene molecular weight by radioquenching. The remaining chapters focus on the crystal structures and morphology of undoped polyacetylenes; methods of isomerization; spectroscopic, physical, and mechanical properties of undoped polyacetylene; and various chemical reactions of polyacetylene and polymethylacetylene. The probable mechanisms of doping are proposed and theoretical models for polyacetylene are presented. The final chapter considers a few technical applications of polyacetylene. This monograph will be of interest to chemists, physicists, and polymer scientists and engineers.




Nanomaterials for Biosensors


Book Description

Nanomaterials for Biosensors: Fundamentals and Applications provides a detailed summary of the main nanomaterials used in biosensing and their application. It covers recent developments in nanomaterials for the fabrication of biosensor devices for healthcare diagnostics, food freshness and bioprocessing. The various processes used for synthesis and characterization of nanostructured materials are examined, along with the design and fabrication of bioelectronic devices using nanostructured materials as building blocks. Users will find the fundamentals of the main nanomaterials used in biosensing, helping them visualize a systematic and coherent picture of how nanomaterials are used in biosensors. The book also addresses the role of bio-conjugation of nanomaterials in the construction of nano-biointerfaces for application in biosensors. Such applications, including metal nanoparticles, metal oxide nanoparticles, nanocomposites, carbon nanotubes, conducting polymers and plasmonic nanostructures in biosensing are discussed relative to each nanomaterial concerned. Finally, recent advancements in protein functionalized nanomaterials for cancer diagnostics and bio-imaging are also included. - Provides a detailed study on how nanomaterials are used to enhance sensing capabilities in biosensors - Explains the properties, characterization methods and preparation techniques of the nanomaterials used in biosensing - Arranged in a material-by-material way, making it clear how each nanomaterial should be used




High Performance Polymers


Book Description

Approaching the material from a chemistry and engineering perspective, High Performance Polymers presents the most reliable and current data available about state-of-the-art polymerization, fabrication, and application methods of high performance industrial polymers. Chapters are arranged according to the chemical constitution of the individual classes, beginning with main chain carbon-carbon polymers and leading to ether-containing, sulfur-containing, and so on. Each chapter follows an easily readable template, provides a brief overview and history of the polymer, and continues on to such sub-topics as monomers; polymerization and fabrication; properties; fabrication methods; special additives; applications; suppliers and commercial grades; safety; and environmental impact and recycling. High Performance Polymers brings a wealth of up-to-date, high performance polymer data to you library, in a format that allows for either a fast fact-check or more detailed study. In this new edition the data has been fully updated to reflect all developments since 2008, particularly in the topics of monomers, synthesis of polymers, special polymer types, and fields of application. - Presents the state-of-the-art polymerization, fabrication and application methods of high performance industrial polymers - Provides fundamental information for practicing engineers working in industries that develop advanced applications (including electronics, automotive and medical) - Discusses environmental impact and recycling of polymers




Advances in Organic Crystal Chemistry


Book Description

This book summarizes and records the recent notable advances in diverse topics in organic crystal chemistry, which has made substantial progress along with the rapid development of a variety of analysis and measurement techniques for solid organic materials. This review book is one of the volumes that are published periodically on this theme. The previous volume, published in 2015, systematically summarized the remarkable progress in assorted topics of organic crystal chemistry using organic solids and organic–inorganic hybrid materials during the previous 5 years, and it has been widely read. The present volume also shows the progress of organic solid chemistry in the last 5 years, with contributions mainly by invited members of the Division of Organic Crystal Chemistry of the Chemical Society of Japan (CSJ), together with prominent invited authors from countries other than Japan.




The Chemistry of Polymers


Book Description

A concise introductory text written from an applied angle, primarily for recent graduates now working in industry who haven't previously studied polymer chemistry. Available in the US from CRC Press. Annotation copyrighted by Book News, Inc., Portland, OR




Fundamentals of Polymerization


Book Description

Over the last twenty years, the field of the chemistry of polymerization witnessed enormous growth through the development of new concepts, catalysts, processes etc. Examples are: non classical living polymerizations (group transfer polymerization, living carbocationic polymerization, living radical polymerization and living ring-opening metathesis polymerization (ROMP)); new catalysts (metallocenes and late transition metal catalysts for stereospecific polymerization, Schrock and Grubbs catalyst for ROMP among others) and new processes such as miniemulsion, microemulsion polymerization and dispersion polymerization (in polar solvents). Apart from the developments in the chemistry of polymerization, methods have been developed for the evaluation of highly reliable rate constants of propagation in radical as well as cationic polymerization. All these have revolutionized the field of synthetic polymer chemistry. In the book, fundamentals of both the new and old polymerization chemistry have been dealt with. The new chemistry has been given nearly equal space along with the old.




Handbook of Advanced Electronic and Photonic Materials and Devices, Ten-Volume Set


Book Description

Vol. 1: Semiconductors;Vol. 2: Semiconductors Devices;Vol. 3: High-Tc Superconductors and Organic Conductors; Vol. 4: Ferroelectrics and Dielectrics; Vol. 5: Chalcogenide Glasses and Sol-Gel Materials; Vol. 6 Nanostructured Materials; Vol. 7: Liquid Crystals, Display and Laser Materials; Vol. 8: Conducting Polymers; Vol. 9: Nonlinear Optical Materials; Volume 10: Light-Emitting Diodes, Lithium Batteries and Polymer Devices




Polymer Science: A Comprehensive Reference


Book Description

The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)