Acoustic Absorption Analysis and Modeling of Asphalt Mixtures


Book Description

Highway traffic noise is a major environmental issue all over the world. This is particularly annoying to residents who live nearby major transportation corridors. Noise pollution adversely affects the quality of their life. It also causes sleep disturbance and anxiety. The most commonly used noise abatement technique is the use of noise barrier walls, which is costly and not always effective. Reducing the tirepavement noise at the source is a viable alternative to cut down the noise level. This study examined the use of an impedance tube to measure the acoustic absorption of asphalt mixtures in the laboratory. The effect of various parameters on the acoustic absorption was investigated including aggregate gradation, aggregate type, binder type, percent air voids, and specimen thickness. In addition, factors that could affect the acoustical performance of asphalt mixtures after pavement construction were also investigated including air void structure, surface texture, temperature, and surface conditions. Percent air voids and layer thickness were found to have a significant influence on the acoustic absorption of asphalt mixtures. An analytical model was proposed to estimate the acoustic absorption coefficient of asphalt mixtures during the design stage. A good correlation was found between predicted and measured absorption coefficients in the laboratory. In addition, a double-layer system of asphalt mixtures was found to be effective in providing improved acoustical performance that overcomes the issues associated with the use of open-graded friction course as a wearing surface.




Evaluation of Acoustic Absorption Characteristics of Asphalt Mixtures


Book Description

Highways traffic noise is a major issue all over the world. It is annoying to the residents who live nearby major transportation corridors. Noise pollution adversely affects the quality of their life. It also causes sleep disturbance and anxiety. Some of the noise abatement techniques such as noise barrier walls are costly and not effective all the times. Reducing the tire-pavement noise at the source is viable alternative to cut down the noise level. This study examined the use of impedance tube to measure the acoustic absorption of asphalt mixtures in the laboratory. The effect of various parameters on the acoustic absorption was investigated including aggregate gradation, aggregate type, binder type, percent air voids, and sample thickness. In addition, factors that could affect the acoustical performance of asphalt mixtures after pavement construction was also investigated including air void structure, surface texture, temperature, and surface conditions. Percent air voids and layer thickness were found to have a significant influence on the acoustic absorption of asphalt mixtures. An analytical model was proposed to estimate the acoustic absorption coefficient of asphalt mixtures during the design stage. A good correlation was found between predicted and measured absorption coefficients in the laboratory. In addition, a double-layer system of asphalt mixtures was found to be effective in providing improved acoustical performance that overcomes the issues associated with the use of open graded friction course as a wearing surface.




8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials


Book Description

This work presents the results of RILEM TC 237-SIB (Testing and characterization of sustainable innovative bituminous materials and systems). The papers have been selected for publication after a rigorous peer review process and will be an invaluable source to outline and clarify the main directions of present and future research and standardization for bituminous materials and pavements. The following topics are covered: - Characterization of binder-aggregate interaction - Innovative testing of bituminous binders, additives and modifiers - Durability and aging of asphalt pavements - Mixture design and compaction analysis - Environmentally sustainable materials and technologies - Advances in laboratory characterization of bituminous materials - Modeling of road materials and pavement performance prediction - Field measurement and in-situ characterization - Innovative materials for reinforcement and interlayer systems - Cracking and damage characterization of asphalt pavements - Recycling and re-use in road pavements This is the proceedings of the RILEM SIB2015 Symposium (Ancona, Italy, October 7-9, 2015).




Modeling and Design of Flexible Pavements and Materials


Book Description

This textbook lays out the state of the art for modeling of asphalt concrete as the major structural component of flexible pavements. The text adopts a pedagogy in which a scientific approach, based on materials science and continuum mechanics, predicts the performance of any configuration of flexible roadways subjected to cyclic loadings. The authors incorporate state-of the-art computational mechanics to predict the evolution of material properties, stresses and strains, and roadway deterioration. Designed specifically for both students and practitioners, the book presents fundamentally complex concepts in a clear and concise way that aids the roadway design community to assimilate the tools for designing sustainable roadways using both traditional and innovative technologies.




Evaluation of Sound Attenuation Abilities of Various Asphalt Pavements


Book Description

Road traffic noise is becoming a major public concern. Many transportation agencies are looking for practical and economical means to reduce traffic noise generation and propagation. In 2003, the University of Waterloo's Centre for Pavement and Transportation Technologies (CPATT) and the Regional Municipality of Waterloo embarked on a partnership to design quiet pavement test sections and to conduct controlled sound level measurement on four different types of asphalt surface courses. Four different surface courses, two Rubberized Open Graded Friction Course Asphalt Pavements (rOFC and rOGC), Stone Mastic Asphalt Pavement (SMA), and a control mix Hot-Laid 3 (HL-3), were placed in lengths of 600 m. The overall 2.4 km test area was closed to traffic and test vehicles were driven through the test area at the prescribed control speeds with sound level meters recording sound levels both at the tire/pavement interface as well as at the monitoring stations off the roadway. Impedance Tube Method and Reverberation Time Method were performed to determine the sound absorption coefficients of the pavement mixes. In order to evaluate the sound attenuation ability of the mixes, the results from rOFC, rOGC, and SMA were used to compare with the result from the control mix HL-3. Statistical analysis of measurement results was performed to see whether the differences between mixes are significant at a 95% confidence interval. Life cycle cost analysis was also performed in order to determine the cost effectiveness of each asphalt mix. Results indicate that traffic sound level increases as vehicle speed and size increase regardless of asphalt types. rOFC and rOGC perform significantly better than HL-3, but the performance slightly deteriorate after one year because of the clogging problem. SMA does not attenuate sound as effectively when compare to HL-3 at the early age. However, sound attenuation ability improves after one year of service. Overall result indicates that rOGC performs the best among all mixes in terms of the sound attenuation ability. Life cycle cost analysis shows that HL-3 is the most economical mix but it is the worst mix in terms of sound attenuation ability. It is recommended to conduct additional sound level and skid resistance measurements in the future to monitor the long-term pavement performance. Also investigation of the relationship between the sound level and sound absorption coefficient measurements is beneficial for the future acoustical evaluation for the asphalt mix.




Tyre, Road Noise


Book Description




Short-term Laboratory Conditioning of Asphalt Mixtures


Book Description

This report develops procedures and associated criteria for laboratory conditioning of asphalt mixtures to simulate short-term aging. The report presents proposed changes to the American Association of State Highway and Transportation Officials (AASHTO) R 30, Mixture Conditioning of Hot-Mix Asphalt (HMA), and a proposed AASHTO practice for conducting plant aging studies. The report will be of immediate interest to materials engineers in state highway agencies and the construction industry with responsibility for design and production of hot and warm mix asphalt.




Estimating Acoustic Performance Trends of Various Asphalt-Surface Mixtures Based on Field Measurement


Book Description

As one measure to reduce traffic noise, designing a noise-reducing ("quiet") pavement surface has received increasing attention. For asphalt pavements, some existing asphalt mixtures have shown better noise-reducing capabilities than conventional dense-graded asphalt concrete (DGAC) pavements. To design a new asphalt mixture optimized for noise reduction, the acoustic performance of existing asphalt-surface mixtures needs to be evaluated and understood. For this purpose, a study was conducted to measure tire/pavement noise on a variety of asphalt pavements for four consecutive years. The tire/pavement noise was measured with an on-board sound-intensity (OBSI) method that was continuously improved during the study. Regression analysis was applied to determine the levels and increase rates of tire/pavement noise on four major asphalt mixtures, and the effects of mix design variables on tire/pavement noise. Results show that tire/pavement noise generally increases with pavement age on all types of asphalt pavements. For newly placed or overlaid pavements, open-graded or rubberized gap-graded mixtures exhibit lower noise levels than conventional dense-graded asphalt mixture. Open-graded asphalt mixtures can retain noise-reduction benefit for a longer period than gap-graded mixtures. Using rubberized binders in the open-graded mixtures can further reduce the noise-increase rate. Pavement surface permeability, macrotexture, and existing surface distresses may affect the tire/pavement noise level.




Advances in Asphalt Materials


Book Description

The urgent need for infrastructure rehabilitation and maintenance has led to a rise in the levels of research into bituminous materials. Breakthroughs in sustainable and environmentally friendly bituminous materials are certain to have a significant impact on national economies and energy sustainability. This book will provide a comprehensive review on recent advances in research and technological developments in bituminous materials. Opening with an introductory chapter on asphalt materials and a section on the perspective of bituminous binder specifications, Part One covers the physiochemical characterisation and analysis of asphalt materials. Part Two reviews the range of distress (damage) mechanisms in asphalt materials, with chapters covering cracking, deformation, fatigue cracking and healing of asphalt mixtures, as well as moisture damage and the multiscale oxidative aging modelling approach for asphalt concrete. The final section of this book investigates alternative asphalt materials. Chapters within this section review such aspects as alternative binders for asphalt pavements such as bio binders and RAP, paving with asphalt emulsions and aggregate grading optimization. Provides an insight into advances and techniques for bituminous materials Comprehensively reviews the physicochemical characteristics of bituminous materials Investigate asphalt materials on the nano-scale, including how RAP/RAS materials can be recycled and how asphalt materials can self-heal and rejuvenator selection