Fossil Energy Update


Book Description




Petroleum Abstracts


Book Description




Acoustic Emission Testing


Book Description

Acoustic Emission (AE) techniques have been studied in civil engineering for a long time. The techniques are recently going to be more and more applied to practical applications and to be standardized in the codes. This is because the increase of aging structures and disastrous damages due to recent earthquakes urgently demand for maintenance and retrofit of civil structures in service for example. It results in the need for the development of advanced and effective inspection techniques. Thus, AE techniques draw a great attention to diagnostic applications and in material testing. The book covers all levels from the description of AE basics for AE beginners (level of a student) to sophisticated AE algorithms and applications to real large-scale structures as well as the observation of the cracking process in laboratory specimen to study fracture processes.




KWIC Index of Rock Mechanics Literature


Book Description

KWIC Index of Rock Mechanics Literature, Part 2: 1969-1976 is an index of subjects in rock mechanics. The KWIC (keyword-in-context) index is produced by cyclic permutation of significant words in the title of the publication. The text covers materials in rock mechanics and geomechanics published around the 70s. The book will be of great use to students, researchers, and practitioners of geological sciences.




Metals Abstracts


Book Description




Methods for Petroleum Well Optimization


Book Description

Drilling and production wells are becoming more digitalized as oil and gas companies continue to implement machine learning andbig data solutions to save money on projects while reducing energy and emissions. Up to now there has not been one cohesiveresource that bridges the gap between theory and application, showing how to go from computer modeling to practical use. Methodsfor Petroleum Well Optimization: Automation and Data Solutions gives today's engineers and researchers real-time data solutionsspecific to drilling and production assets. Structured for training, this reference covers key concepts and detailed approaches frommathematical to real-time data solutions through technological advances. Topics include digital well planning and construction,moving teams into Onshore Collaboration Centers, operations with the best machine learning (ML) and metaheuristic algorithms,complex trajectories for wellbore stability, real-time predictive analytics by data mining, optimum decision-making, and case-basedreasoning. Supported by practical case studies, and with references including links to open-source code and fit-for-use MATLAB, R,Julia, Python and other standard programming languages, Methods for Petroleum Well Optimization delivers a critical training guidefor researchers and oil and gas engineers to take scientifically based approaches to solving real field problems. - Bridges the gap between theory and practice (from models to code) with content from the latest research developments supported by practical case study examples and questions at the end of each chapter - Enables understanding of real-time data solutions and automation methods available specific to drilling and production wells, suchas digital well planning and construction through to automatic systems - Promotes the use of open-source code which will help companies, engineers, and researchers develop their prediction and analysissoftware more quickly; this is especially appropriate in the application of multivariate techniques to the real-world problems of petroleum well optimization







Coal Abstracts


Book Description




Graduate Studies


Book Description




Rock Fractures and Fluid Flow


Book Description

Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.