Acoustics in Moving Inhomogeneous Media


Book Description

This is the first book to offer a complete and rigorous study of sound propagation and scattering in moving media that have regular and random inhomogeneities in adiabatic sound speed, density and medium velocity. The book is an invaluable resource for engineers and scientists who work on outdoor noise control, on acoustical detection and ranging in the atmosphere, and on acoustal remote sensing of the atmosphere and ocean, whether they are based in the industry, or government and military laboritories and institutions. It will be required reading for researchers who use numerical methods in these fields and in its step by step approach makes it an important reference for teachers and graduate students.




Acoustics in Moving Inhomogeneous Media


Book Description

Introduces Systematic Formulations for Use in Acoustic ApplicationsAcoustics in Moving Inhomogeneous Media, Second Edition offers a uniquely complete and rigorous study of sound propagation and scattering in moving media with deterministic and random inhomogeneities. This study is of great importance in many fields including atmospheric and oceanic







Acoustics in Moving Inhomogeneous Media


Book Description

This is the first book to offer a complete and rigorous study of sound propagation and scattering in moving media that have regular and random inhomogeneities in adiabatic sound speed, density and medium velocity. The book is an invaluable resource for engineers and scientists who work on outdoor noise control, on acoustical detection and ranging in the atmosphere, and on acoustal remote sensing of the atmosphere and ocean, whether they are based in the industry, or government and military laboritories and institutions. It will be required reading for researchers who use numerical methods in these fields and in its step by step approach makes it an important reference for teachers and graduate students.




Acoustics of Layered Media II


Book Description

Acoustics of Layered Media II presents the theory of sound propagation and reflection of spherical waves and bounded beams in layered media. It is mathematically rigorous but at the same time care is taken that the physical usefulness in applications and the logic of the theory are not hidden. Both moving and stationary media, discretely and continuously layered, including a range-dependent environment, are treated for various types of acoustic wave sources. Detailed appendices provide further background on the mathematical methods. This second edition reflects the notable recent progress in the field of acoustic wave propagation in inhomogeneous media.




Computational Atmospheric Acoustics


Book Description

Noise from cars, trains, and aeroplanes can be heard at large distances from the source. Accurate predictions of the loudness of the noise require accurate computations of sound propagation in the atmosphere. This book describes models that can be used for these computations. The models take into account complex effects of the atmosphere and the ground surface on sound waves, including the effects of wind and temperature distributions, atmospheric turbulence, irregular terrain, and noise barriers. The main text of the book focuses on physical effects in atmospheric acoustics. The effects are illustrated by many numerical examples. The main text requires a very limited mathematical background from the reader; detailed mathematical descriptions of the models, developed from the basic principles of acoustics, are presented in appendices. Models for moving media are compared with models that are based on the effective sound speed approach. Both two-dimensional models and three-dimensional models are presented. As meteorological effects play an important role in atmospheric acoustics, selected topics from boundary layer meteorology and the theory of turbulence are also presented.




Acoustics of Layered Media I


Book Description

This monograph is devoted to the systematic presentation of the theory of sound wave propagation in layered structures. These structures can be man-made, such as ultrasonic filters, lenses, surface-wave delay lines, or natural media, such as the ocean and the atmosphere, with their marked horizontal stratification. A related problem is the propagation of elastic (seismic) waves in the earth's crust These topics have been treated rather completely in the book by L. M. Brek hovskikh, Waves in Layered Media, the English version of the second edition of which was published by Academic Press in 1980. Due to progress in experimental and computer technology it has become possible to analyze the influence of factors such as medium motion and density stratification upon the propagation of sound waves. Much attention has been paid to propagation theory in near-stratified media, Le. , media with small deviations from strict stratification. Interesting results have also been obtained in the fields of acoustics which had been previously considered to be "completely" developed. For these reasons, and also because of the inflow of researchers from the related fields of physics and mathematics, the circle of persons and research groups engaged in the study of sound propagation has rather expanded. Therefore, the appearance of a new summary review of the field of acoustics of layered media has become highly desirable. Since Waves in Layered Media became quite popular, we have tried to retain its positive features and general structure.




History Of Russian Underwater Acoustics


Book Description

This book describes, using first-person accounts, the history of the development in the Soviet Union and, later, in Russia of an extremely important technical field and how that history was influenced by WWI, WWII, and the Cold War, by government bureaucracy, in both positive and negative ways, by the economic collapse of the Soviet Union, and most importantly, by the dedicated efforts of vast numbers of individuals, including some of the greatest scientific minds of the 20th century. It will make fascinating reading for engineers and scientists who were engaged in similar work in the West, for historians of the Cold War and of the Soviet Union, and for present day researchers who need to learn about Russian scientific contributions.Because of its importance to national security, much of the research and development effort in underwater acoustics was classified during the Cold War, both in the Soviet Union and the United States. This book presents the first declassified accounts of the development of numerous hydroacoustic systems by individuals having first-hand knowledge of the development efforts.




Infrasound Propagation in an Anisotropic Fluctuating Atmosphere


Book Description

This book presents the theory and results of experimental studies of the propagation of infrasound waves in a real atmosphere with its inherent fine-scale layered structure of wind speed and temperature. It is motivated by the fact that the statistical characteristics of anisotropic (or layered) fluctuations of meteorological fields, the horizontal scales of which significantly exceed their vertical scales, have been very poorly studied compared to those of locally isotropic turbulence in the inertial range of scales. This book addresses this lacuna by developing a theory of the formation of anisotropic inhomogeneities of the atmosphere in a random field of internal gravity waves and vortex structures. Using theory, it explains numerous experimental data depicting the influence of the fine structure of the atmosphere on the propagation of infrasound waves from pulsed sources. The text will appeal to specialists in the fields of acoustics and optics of the atmosphere, remote sensing of the atmosphere, the dynamics of internal waves, nonlinear acoustics, and infrasound monitoring of explosions and natural hazards.




Sound-Flow Interactions


Book Description

The coupling between acoustic waves and fluid flow motion is basically nonlinear, with the result that flow and sound modify themselves reciprocally with respect to generation and propagation properties. As a result this problem is investigated by many different communities, such as applied mathematics, acoustics and fluid mechanics. This book is the result of an international school which was held to discuss the foundation of sound--flow interactions, to share expertise and methodologies, and to promote cross-fertilization between the different disciplines involved. It consists essentially of a set of pedagogical lectures and is meant to serve not only as a compact source of reference for the experienced researcher but also as an advanced textbook for postgraduate students, and nonspecialists wishing to familiarize themselves in depth, at a research level, with this fascinating subject.




Recent Books