Structural Acoustics and Vibration


Book Description

Structural Acoustics and Vibration presents the modeling of vibrations of complex structures coupled with acoustic fluids in the low and medium frequency ranges. It is devoted to mechanical models, variationalformulations and discretization for calculating linear vibrations in the frequency domain of complex structures. The book includes theoretical formulations which are directly applicable to develop computer codes for the numerical simulation of complex systems, and gives a general scientific strategy to solve various complex structural acoustics problems in different areas such as spacecraft, aircraft, automobiles, and naval structures. The researcher may directly apply the material of the book to practical problems such as acoustic pollution, the comfort of passengers, and acoustic loads induced by propellers. Structural Acoustics and Vibration considers the mechanical and numerical aspects of the problem, and gives original solutions to the predictability of vibrations of complex structures interacting with internal and external, liquid and gaseous fluids. It is a self-contained general synthesis with a didactic presentation and fills the gap between analytical methods applied to simple geometries and statistical methods, which are useful in high frequency structural acoustic problems. Provides for the first time complex structures in scientific literature Presents a self-contained general synthesis with a didactic presentation Integrates the most advanced research topics on the subject Enables the researcher to solve complex structural acoustics problems in areas such as spacecraft, aircraft, automobiles, and naval structures Fills the gap between analytical methods applied to simple geometries and statistical methods Contains advanced mechanical and numerical modeling Provides appropriate formulations directly applicable for developing computer codes for the numerical simulation of complex systemssystems




Vibration and Structural Acoustics Analysis


Book Description

Vibration and structural acoustics analysis has become an essential requirement for high-quality structural and mechanical design in order to assure acoustic comfort and the integrity, reliability and fail-safe behavior of structures and machines. The underlying technologies of this field of multidisciplinary research are evolving very fast and their dissemination is usually scattered over different and complementary scientific and technical publication means. In order to make it easy for developers and technology end-users to follow the latest developments and news in the field, this book collects into a single volume selected, extended, updated and revised versions of papers presented at the Symposium on Vibration and Structural Acoustics Analysis, coordinated by J. Dias Rodrigues and C. M. A. Vasques, which was organised as part of the 3rd International Conference on Integrity, Reliability & Failure (IRF’2009), co-chaired by J. F. Silva Gomes and Shaker A. Meguid, held at the Faculty of Engineering of the University of Porto, Portugal, 20-24 July 2009. These papers where chosen from the more than 60 papers presented at the conference symposium. Written by experienced practitioners and researchers in the field, this book brings together recent developments in the field, spanning across a broad range of themes: vibration analysis, analytical and computational structural acoustics and vibration, material systems and technologies for noise and vibration control, vibration-based structural health monitoring/evaluation, machinery noise/vibration and diagnostics, experimental testing in vibration and structural acoustics, applications and case studies in structural acoustics and vibration. Each chapter presents and describes the state of the art, presents current research results and discusses the need for future developments in a particular aspect of vibration and structural acoustics analysis. The book is envisaged to be an appealing text for newcomers to the subject and a useful research study tool for advanced students and faculty members. Practitioners and researchers may also find this book a one-stop reference that addresses current and future challenges in this field. The variety of case studies is expected to stimulate a holistic view of sound and vibration and related fields and to appeal to a broad spectrum of engineers such as the ones in the mechanical, aeronautical, aerospace, civil and electrical communities.







Computational Aspects of Structural Acoustics and Vibration


Book Description

Computational methods within structural acoustics, vibration and fluid-structure interaction are powerful tools for investigating acoustic and structural-acoustic problems in many sectors of industry; in the building industry regarding room acoustics, in the car industry and aeronautical industry for optimizing structural components with regard to vibrations characteristics etc. It is on the verge of becoming a common tool for noise characterization and design for optimizing structural properties and geometries in order to accomplish a desired acoustic environment. The book covers the field of computational mechanics, and then moved into the field of formulations of multiphysics and multiscale. The book is addressed to graduate level, PhD students and young researchers interested in structural dynamics, vibrations and acoustics. It is also suitable for industrial researchers in mechanical, aeronautical and civil engineering with a professional interest in structural dynamics, vibrations and acoustics or involved in questions regarding noise characterization and reduction in building, car, plane, space, train, industries by means of computer simulations.




Acoustics and Vibration of Mechanical Structures—AVMS-2017


Book Description

This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.




Acoustics and Vibration of Mechanical Structures—AVMS 2019


Book Description

This book contains selected and expanded contributions presented at the 15th Conference on Acoustics and Vibration of Mechanical Structures held in Timisoara, Romania, May 30-31, 2019. The conference focused on a broad range of topics related to acoustics and vibration, such as analytical approaches to nonlinear noise and vibration problems, environmental and occupational noise, structural vibration, biomechanics and bioacoustics, as well as experimental approaches to vibration problems in industrial processes. The different contributions also address the analytical, numerical and experimental techniques applicable to analyze linear and non-linear noise and vibration problems (including strong nonlinearity) and they are primarily intended to emphasize the actual trends and state-of-the-art developments in the above mentioned topics. The book is meant for academics, researchers and professionals, as well as PhD students concerned with various fields of acoustics and vibration of mechanical structures.




Finite Element and Boundary Methods in Structural Acoustics and Vibration


Book Description

Effectively Construct Integral Formulations Suitable for Numerical ImplementationFinite Element and Boundary Methods in Structural Acoustics and Vibration provides a unique and in-depth presentation of the finite element method (FEM) and the boundary element method (BEM) in structural acoustics and vibrations. It illustrates the principles using a




Acoustics and Vibration of Mechanical Structures – AVMS-2021


Book Description

This book is a collection of contributions presented at the 16th Conference on Acoustic and Vibration of Mechanical Structure held in Timişoara, Romania, May 28, 2021. The conference focused on a broad range of topics related to acoustics and vibration, such as noise and vibration control, noise and vibration generation and propagation, effects of noise and vibration, condition monitoring and vibration testing, modelling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, biomechanics and bioacoustics. The book also discusses analytical, numerical and experimental techniques applicable to analyze linear and non-linear noise and vibration problems (including strong nonlinearity) and it is primarily intended to emphasize the actual trends and state-of-the-art developments in the above mentioned topics. The primary audience of this book consist of academics, researchers and professionals, as well as PhD students concerned with various fields of acoustics and vibration of mechanical structures.




Acoustics & Vibration of Mechanical Structures


Book Description

Selected, peer reviewed papers from the XII-th International Symposium Acoustics & Vibration of Mechanical Structures (AVMS 2013), May 23-24, 2013, Timişoara, Romania




Vibrations and Waves in Continuous Mechanical Systems


Book Description

The subject of vibrations is of fundamental importance in engineering and technology. Discrete modelling is sufficient to understand the dynamics of many vibrating systems; however a large number of vibration phenomena are far more easily understood when modelled as continuous systems. The theory of vibrations in continuous systems is crucial to the understanding of engineering problems in areas as diverse as automotive brakes, overhead transmission lines, liquid filled tanks, ultrasonic testing or room acoustics. Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics. Presents dynamics and analysis techniques for a wide range of continuous systems including strings, bars, beams, membranes, plates, fluids and elastic bodies in one, two and three dimensions. Covers special topics such as the interaction of discrete and continuous systems, vibrations in translating media, and sound emission from vibrating surfaces, among others. Develops the reader’s understanding by progressing from very simple results to more complex analysis without skipping the key steps in the derivations. Offers a number of new topics and exercises that form essential steppingstones to the present level of research in the field. Includes exercises at the end of the chapters based on both the academic and practical experience of the authors. Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will be suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field.