The Activation of Dioxygen and Homogeneous Catalytic Oxidation


Book Description

This monograph consists of the proceedings of the Fifth International Symposium on the Activation of Dioxygen and Homogeneous Catalytic Oxidation, held in College Station, Texas, March 14-19, 1993. It contains an introductory chapter authored by Professors D. H. R. Barton and D. T. Sawyer, and twenty-nine chapters describing presentations by the plenary lecturers and invited speakers. One of the invited speakers, who could not submit a manuscript for reasons beyond his control, is represented by an abstract of his lecture. Also included are abstracts of forty-seven posters contributed by participants in the symposium. Readers who may wish to know more about the subjects presented in abstract form are invited to communicate directly with the authors of the abstracts. This is the fifth international symposium that has been held on this subject. The first was hosted by the CNRS, May 21-29, 1979, in Bendor, France (on the Island of Bandol). The second meeting was organized as a NATO workshop in Padova, Italy, June 24-27, 1984. This was followed by a meeting in Tsukuba, Japan, July 12-16, 1987. The fourth symposium was held at Balatonfured, Hungary, September 10-14, 1990. The sixth meeting is scheduled to take place in Delft, The Netherlands (late Spring, 1996); the organizer and host will be Professor R. A. Sheldon.




Dioxygen Activation and Homogeneous Catalytic Oxidation


Book Description

Dioxygen activation is a rapidly developing field in which research is directed at (1) modelling of biological oxidations, (2) design and utilization of new catalysts for oxidative transformations of organic substrates, (3) application of O 2 (and H 2 O 2 ) as a cheap oxidant in the manufacture of fine and bulk chemicals. Provided here is a collection of both review and original papers covering all aspects of dioxygen activation. All papers provide background information of previous work. Reactions mechanisms are extensively treated and a keyword index facilitates quick orientation. The book should prove invaluable to organic, bioinorganic and coordination chemists as well as biochemists interested in homogeneous catalysis.




Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes


Book Description

hemistry is the science about breaking and forming of bonds between atoms. One of the most important processes for organic chemistry is breaking bonds C–H, as well as C–C in various compounds, and primarily, in hydrocarbons. Among hydrocarbons, saturated hydrocarbons, alkanes (methane, ethane, propane, hexane etc. ), are especially attractive as substrates for chemical transformations. This is because, on the one hand, alkanes are the main constituents of oil and natural gas, and consequently are the principal feedstocks for chemical industry. On the other hand, these substances are known to be the less reactive organic compounds. Saturated hydrocarbons may be called the “noble gases of organic chemistry” and, if so, the first representative of their family – methane – may be compared with extremely inert helium. As in all comparisons, this parallel between noble gases and alkanes is not fully accurate. Indeed the transformations of alkanes, including methane, have been known for a long time. These reactions involve the interaction with molecular oxygen from air (burning – the main source of energy!), as well as some mutual interconversions of saturated and unsaturated hydrocarbons. However, all these transformations occur at elevated temperatures (higher than 300–500 °C) and are usually characterized by a lack of selectivity. The conversion of alkanes into carbon dioxide and water during burning is an extremely valuable process – but not from a chemist viewpoint.




Catalytic Activation of Dioxygen by Metal Complexes


Book Description

The activation of dioxygen by metal ions has both synthetic potential and biological relevance. Dioxygen is the cleanest oxidant for use in emission-free technologies to minimize pollution of the environment. The book gives a survey of those catalyst systems based on metal complexes which have been discovered and studied in the last decade. They activate molecular oxygen and effect the oxidation of various organic compounds under mild conditions. Much of the recent progress is due to a search for biomimetic catalysts that would duplicate the action of metalloenzymes. Mechanistic aspects are emphasized throughout the book. An introductonary chapter reviews the chemistry of transition metal dioxygen complexes, which are usually the active intermediates in the catalytic reactions discussed. Separate chapters are devoted to oxidation of saturated, unsaturated and aromatic hydrocarbons, phenols, catechols, oxo-compounds, phosphorus, sulfur and nitrogen compounds.




Catalytic Oxidation: Principles And Applications - A Course Of The Netherlands Institute For Catalysis Research (Niok)


Book Description

This book consists of lectures presented by international authorities in the field, at a course on Oxidation Catalysis organized by the Dutch Research School in Catalysis at Rolduc in June 1994.The material covered spans the whole range of the subject from the fundamental principles of gas and liquid phase oxidations to reactor engineering for industrial processing. The use of catalytic oxidation in both bulk and fine chemicals manufacture and the different types of catalysis — heterogeneous-gas phase, homogeneous-liquid phase and heterogeneous-liquid phase — are discussed. In addition, a few special topics, such as electrocatalytic and high-temperature oxidation are dealt with.The book is intended for graduate students or industrial researchers who wish to acquaint themselves with the underlying principles of catalytic oxidations and the numerous applications of this important technology.




Activating Unreactive Substrates


Book Description

The use of secondary interactions for the activation of non-reactive substrates constitutes a new and modern approach in catalysis. This first comprehensive treatment of this important research field covers the entire field and reveals the links between the various chemical disciplines. It thus adopts an interdisciplinary approach, making it of interest to the whole chemical community. A must for organic, inorganic, catalytic and complex chemists, as well as those working with/on organometallics.




Modern Oxidation Methods


Book Description

At the very latest, with the award of the 2001 Nobel Prize for work on asymmetric oxidation, there has been a need for a comprehensive book on such methods. Edited by J.-E. Backvall, one of the world's leaders in the field, this book fills that gap by covering the topic, from classical to green chemistry methods. He has put together a plethora of well-established authors from all over the world who cover every important aspect in high-quality contributions -- whether aerobic oxidation or transition metal-catalyzed epoxidation of alkenes. By providing an overview of this huge topic, this book represents an unparalleled aid for any chemist working in the field. Chapters include: Recent Developments in the Osmium-Catalyzed Dihydroxylation of Olefins Transition Metal-Catalyzed Epoxidation of Alkenes Organocatalytic Oxidation - Ketone-Catalyzed Asymmetric Epoxidation of Olefins Modern Oxidation of Alcohols using environmentally Benign Oxidants Aerobic Oxidations and Related Reactions Catalyzed by N-Hydroxyphthalimide Ruthenium-Catalyzed Oxidation of Alkenes, Alcohols, Amines, Amides, b-Lactams, Phenols, and Hydrocarbons Selective Oxidations of Sulfides and Amines Liquid Phase Oxidation Reactions Catalyzed by Polyoxometalates Oxidation of Carbonyl Compounds Mn-catalysed Oxidation with Hydrogen Peroxide




Active Oxygen in Chemistry


Book Description

Taking an interdisciplinary approach, this book and its counterpart, Active Oxygen in Biochemistry, explore the active research area of the chemistry and biochemistry of oxygen. Complementary but independent, the two volumes integrate subject areas including medicine, biology, chemistry, engineering, and environmental studies.




Advances in Catalytic Activation of Dioxygen by Metal Complexes


Book Description

The subject of dioxygen activation and homogeneous catalytic oxidation by metal complexes has been in the focus of attention over the last 20 years. The widespread interest is illustrated by its recurring presence among the sessions and subject areas of important international conferences on various aspects of bioinorganic and coordination chemistry as well as catalysis. The most prominent examples are ICCC, ICBIC, EUROBIC, ISHC, and of course the ADHOC series of meetings focusing on the subject itself. Similarly, the number of original and review papers devoted to various aspects of dioxygen activation are on the rise. This trend is due obviously to the relevance of catalytic oxidation to biological processes such as dioxygen transport, and the action of oxygenase and oxidase enzymes related to metabolism. The structural and functional modeling of metalloenzymes, particularly of those containing iron and copper, by means of low-molecular complexes of iron, copper, ruthenium, cobalt, manganese, etc., have provided a wealth of indirect information helping to understand how the active centers of metalloenzymes may operate. The knowledge gained from the study of metalloenzyme models is also applicable in the design of transition metal complexes as catalytsts for specific reactions. This approach has come to be known as biomimetic or bioinspired catalysis and continues to be a fruitful and expanding area of research.




Characterization and Chemical Modification of the Silica Surface


Book Description

Oxide surface materials are widely used in many applications, in particular where chemically modified oxide surfaces are involved. Indeed, in disciplines such as separation, catalysis, bioengineering, electronics, ceramics, etc., modified oxide surfaces are very important. In all cases, the knowledge of their chemical and surface characteristics is of great importance for the understanding and eventual improvement of their performances. This book reviews the latest techniques and procedures in the characterization and chemical modification of the silica surface, presenting a unified and state-of-the-art approach to the relevant analysis techniques and modification procedures, covering 1000 references integrated into one clear concept.