Active Flow and Combustion Control 2018


Book Description

The book reports on the latest theoretical and experimental findings in the field of active flow and combustion control. It covers new developments in actuator technology and sensing, in robust and optimal open- and closed-loop control, as well as in model reduction for control, constant volume combustion and dynamic impingement cooling. The chapters reports oncutting-edge contributions presented during the fourth edition of the Active Flow and Combustion Control conference, held in September 19 to 21, 2018 at the Technische Universität Berlin, in Germany. This conference, as well as the research presented in the book, have been supported by the collaborative research center SFB 1029 on “Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics”, funded by the DFG (German Research Foundation). It offers a timely guide for researchers and practitioners in the field of aeronautics, turbomachinery, control and combustion.




Optimization of Active Control Systems for Suppressing Combustion Dynamics


Book Description

Results from an experimental study of active combustion control using modulated secondary fuel on a laboratory-scale, lean premixed dump combustors are presented. A simple phase-delay, closed-loop controller was used for these tests operating at the 4th sub- harmonic of the dominant frequency of the instability. Tests were conducted using both natural gas and Jet-A as the secondary fuel and the results are compared. Of particular interest are the observed differences in control effectiveness and the causes of those differences.




Active Combustion Control


Book Description

(Cont.) is a dump combustor, constructed at University of Maryland, so as to reproduce more realistic ramjet conditions. The third is an industrial swirl-stabilized combustor, constructed at University of Cambridge, to mimic realistic industrial gas combustor configurations which typically include large convective time delays, swirl, and on-line changes in the operating conditions. Results obtained from these three configurations show that through an understanding of the underlying physics and reduced-order modeling, one can design an appropriate actuation, sensing and control algorithm, all of which lead to model-based active control that reduces pressure oscillations to background noise.




Proceedings of the ASME Turbo Expo 2002 Presented at the 2002 ASME Turbo Expo, June 3-6, 2002, Amsterdam, the Netherlands


Book Description

Annotation This is Volume 1 of five volumes that comprise the proceedings of the June 2002 conference, sponsored by the International Gas Turbine Institute (IGTI), a technical institute of the American Society of Mechanical Engineers. The purpose of the conference was to facilitate international exchange and development of educational and technical information related to the design, application, manufacture, operation, maintenance, and environmental impact of all types of gas engines. With an emphasis upon the need for more efficient, cleaner, and more reliable gas turbines, the approximately 130 articles cover various technical aspects of aircraft engines; coal, biomass, and alternative fuels; combustion and fuels; education; electric power; and vehicular and small turbomachines. There is no subject index. Annotation c. Book News, Inc., Portland, OR (booknews.com).