Active Control of Noise and Vibration


Book Description

This major work is the first to treat the active control of both sound and vibration in a unified way. It outlines the fundamental concepts, explains how a reliable and stable system can be designed and implemented, and details the pitfalls . It covers sound in ducts, sound radiation, sound transmission into enclosures, structural vibration and isolation, electronic control system design, and sensors and actuators.







Active Control of Vibration


Book Description

This book is a companion text to Active Control of Sound by P.A. Nelson and S.J. Elliott, also published by Academic Press. It summarizes the principles underlying active vibration control and its practical applications by combining material from vibrations, mechanics, signal processing, acoustics, and control theory. The emphasis of the book is on the active control of waves in structures, the active isolation of vibrations, the use of distributed strain actuators and sensors, and the active control of structurally radiated sound. The feedforward control of deterministic disturbances, the active control of structural waves and the active isolation of vibrations are covered in detail, as well as the more conventional work on modal feedback. The principles of the transducers used as actuateors and sensors for such control strategies are also given an in-depth description. The reader will find particularly interesting the two chapters on the active control of sound radiation from structures: active structural acoustic control. The reason for controlling high frequency vibration is often to prevent sound radiation, and the principles and practical application of such techniques are presented here for both plates and cylinders. The volume is written in textbook style and is aimed at students, practicing engineers, and researchers. - Combines material from vibrations, signal processing, mechanics, and controls - Summarizes new research in the field







Active Sound and Vibration Control


Book Description

This book presents the established fundamentals in the area of active sound and vibration control and explores new and emerging technologies and techniques. The latest theoretical, algorithmic and practical applications are covered.




Handbook of Noise and Vibration Control


Book Description

Two of the most acclaimed reference works in the area of acoustics in recent years have been our Encyclopedia of Acoustics, 4 Volume set and the Handbook of Acoustics spin-off. These works, edited by Malcolm Crocker, positioned Wiley as a major player in the acoustics reference market. With our recently published revision of Beranek & Ver's Noise and Vibration Control Engineering, Wiley is a highly respected name in the acoustics business. Crocker's new handbook covers an area of great importance to engineers and designers. Noise and vibration control is one largest areas of application of the acoustics topics covered in the successful encyclopedia and handbook. It is also an area that has been under-published in recent years. Crocker has positioned this reference to cover the gamut of topics while focusing more on the applications to industrial needs. In this way the book will become the best single source of need-to-know information for the professional markets.





Book Description




Control of Fluid Flow


Book Description

This monograph presents the state of the art of theory and applications in fluid flow control, assembling contributions by leading experts in the field. The book covers a wide range of recent topics including vortex based control algorithms, incompressible turbulent boundary layers, aerodynamic flow control, control of mixing and reactive flow processes or nonlinear modeling and control of combustion dynamics.




Damping of Vibrations


Book Description

This monograph seeks to strengthen the contributions of Polish scientists and engineers to the study of problems of mechanical vibrations and noise. It presents research covering such topics as: structural damping; internal damping in composite materials; and noise attenuation in working machines.