Adapting Hardware Systems by Means of Multi-Objective Evolution


Book Description

Reconfigurable circuit devices have opened up a fundamentally new way of creating adaptable systems. Combined with artificial evolution, reconfigurable circuits allow an elegant adaptation approach to compensating for changes in the distribution of input data, computational resource errors, and variations in resource requirements. Referred to as "Evolvable Hardware" (EHW), this paradigm has yielded astonishing results for traditional engineering challenges and has discovered intriguing design principles, which have not yet been seen in conventional engineering. In this thesis, we present new and fundamental work on Evolvable Hardware motivated by the insight that Evolvable Hardware needs to compensate for events with different change rates. To solve the challenge of different adaptation speeds, we propose a unified adaptation approach based on multi-objective evolution, evolving and propagating candidate solutions that are diverse in objectives that may experience radical changes. Focusing on algorithmic aspects, we enable Cartesian Genetic Programming (CGP) model, which we are using to encode Boolean circuits, for multi-objective optimization by introducing a meaningful recombination operator. We improve the scalability of CGP by objectives scaling, periodization of local- and global-search algorithms, and the automatic acquisition and reuse of subfunctions using age- and cone-based techniques. We validate our methods on the applications of adaptation of hardware classifiers to resource changes, recognition of muscular signals for prosthesis control and optimization of processor caches.




Inspired by Nature


Book Description

This book is a tribute to Julian Francis Miller’s ideas and achievements in computer science, evolutionary algorithms and genetic programming, electronics, unconventional computing, artificial chemistry and theoretical biology. Leading international experts in computing inspired by nature offer their insights into the principles of information processing and optimisation in simulated and experimental living, physical and chemical substrates. Miller invented Cartesian Genetic Programming (CGP) in 1999, from a representation of electronic circuits he devised with Thomson a few years earlier. The book presents a number of CGP’s wide applications, including multi-step ahead forecasting, solving artificial neural networks dogma, approximate computing, medical informatics, control engineering, evolvable hardware, and multi-objective evolutionary optimisations. The book addresses in depth the technique of ‘Evolution in Materio’, a term coined by Miller and Downing, using a range of examples of experimental prototypes of computing in disordered ensembles of graphene nanotubes, slime mould, plants, and reaction diffusion chemical systems. Advances in sub-symbolic artificial chemistries, artificial bio-inspired development, code evolution with genetic programming, and using Reed-Muller expansions in the synthesis of Boolean quantum circuits add a unique flavour to the content. The book is a pleasure to explore for readers from all walks of life, from undergraduate students to university professors, from mathematicians, computer scientists and engineers to chemists and biologists.




Organic Computing — A Paradigm Shift for Complex Systems


Book Description

Organic Computing has emerged as a challenging vision for future information processing systems. Its basis is the insight that we will increasingly be surrounded by and depend on large collections of autonomous systems, which are equipped with sensors and actuators, aware of their environment, communicating freely, and organising themselves in order to perform actions and services required by the users. These networks of intelligent systems surrounding us open fascinating ap-plication areas and at the same time bear the problem of their controllability. Hence, we have to construct such systems as robust, safe, flexible, and trustworthy as possible. In particular, a strong orientation towards human needs as opposed to a pure implementation of the tech-nologically possible seems absolutely central. The technical systems, which can achieve these goals will have to exhibit life-like or "organic" properties. "Organic Computing Systems" adapt dynamically to their current environmental conditions. In order to cope with unexpected or undesired events they are self-organising, self-configuring, self-optimising, self-healing, self-protecting, self-explaining, and context-aware, while offering complementary interfaces for higher-level directives with respect to the desired behaviour. First steps towards adaptive and self-organising computer systems are being undertaken. Adaptivity, reconfigurability, emergence of new properties, and self-organisation are hot top-ics in a variety of research groups worldwide. This book summarises the results of a 6-year priority research program (SPP) of the German Research Foundation (DFG) addressing these fundamental challenges in the design of Organic Computing systems. It presents and discusses the theoretical foundations of Organic Computing, basic methods and tools, learning techniques used in this context, architectural patterns and many applications. The final outlook shows that in the mean-time Organic Computing ideas have spawned a variety of promising new projects.




Evolvable Hardware


Book Description

This book covers the basic theory, practical details and advanced research of the implementation of evolutionary methods on physical substrates. Most of the examples are from electronic engineering applications, including transistor-level design and system-level implementation. The authors present an overview of the successes achieved, and the book will act as a point of reference for both academic and industrial researchers.




Genetic Programming


Book Description

This book constitutes the refereed proceedings of the 18th European Conference on Genetic Programming, EuroGP 2015, held in Copenhagen, Spain, in April 2015 co-located with the Evo 2015 events, EvoCOP, Evo MUSART and Evo Applications. The 12 revised full papers presented together with 6 poster papers were carefully reviewed and selected form 36 submissions. The wide range of topics in this volume reflects the current state of research in the field. Thus, we see topics as diverse as semantic methods, recursive programs, grammatical methods, coevolution, Cartesian GP, feature selection, initialisation procedures, ensemble methods and search objectives; and applications including text processing, cryptography, numerical modelling, software parallelisation, creation and optimisation of circuits, multi-class classification, scheduling and artificial intelligence.




Evolvable Systems: From Biology to Hardware


Book Description

This book constitutes the refereed proceedings of the 7th International Conference on Evolvable Systems, ICES 2007, held in Wuhan, China, in September 2007. The 41 revised full papers collected in this volume are organized in topical sections on digital hardware evolution, analog hardware evolution, bio-inspired systems, mechanical hardware evolution, evolutionary design, evolutionary algorithms in hardware design, and hardware implementation of evolutionary algorithms.




Computational Intelligence and Intelligent Systems


Book Description

Volumes CCIS 51 and LNCS 5812 constitute the proceedings of the Fourth Interational Symposium on Intelligence Computation and Applications, ISICA 2009, held in Huangshi, China, during October 23-25. ISICA 2009 attracted over 300 submissions. Through rigorous reviews, 58 papers were included in LNCS 5821,and 54 papers were collected in CCIS 51. ISICA conferences are one of the first series of international conferences on computational intelligence that combine elements of learning, adaptation, evolution and fuzzy logic to create programs as alternative solutions to artificial intelligence.




Evolvable Systems: From Biology to Hardware


Book Description

Biology has inspired electronics from the very beginning: the machines that we now call computers are deeply rooted in biological metaphors. Pioneers such as Alan Turing and John von Neumann openly declared their aim of creating arti?cial machines that could mimic some of the behaviors exhibited by natural organisms. Unfortunately, technology had not progressed enough to allow them to put their ideas into practice. The 1990s saw the introduction of programmable devices, both digital (FP- GAs) and analogue (FPAAs). These devices, by allowing the functionality and the structure of electronic devices to be easily altered, enabled researchers to endow circuits with some of the same versatility exhibited by biological entities and sparked a renaissance in the ?eld of bio-inspired electronics with the birth of what is generally known as evolvable hardware. Eversince,the?eldhasprogressedalongwiththetechnologicalimprovements and has expanded to take into account many di?erent biological processes, from evolution to learning, from development to healing. Of course, the application of these processes to electronic devices is not always straightforward (to say the least!), but rather than being discouraged, researchers in the community have shown remarkable ingenuity, as demostrated by the variety of approaches presented at this conference and included in these proceedings.




Swarm Intelligence for Electric and Electronic Engineering


Book Description

With growing developments in artificial intelligence and focus on swarm behaviors; algorithms have been utilized in solving a variety of problems in the field of engineering. This approach has been specifically suited to face the challenges in electric and electronic engineering. Swarm Intelligence for Electric and Electronic Engineering provides an exchange of knowledge on the advances, discoveries, and improvements of swarm intelligence in electric and electronic engineering. This comprehensive collection aims to bring together new swarm-based algorithms as well as approaches to complex problems and various real-world applications.




Advances in Neuro-Information Processing


Book Description

The two volume set LNCS 5506 and LNCS 5507 constitutes the thoroughly refereed post-conference proceedings of the 15th International Conference on Neural Information Processing, ICONIP 2008, held in Auckland, New Zealand, in November 2008. The 260 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. 116 papers are published in the first volume and 112 in the second volume. The contributions deal with topics in the areas of data mining methods for cybersecurity, computational models and their applications to machine learning and pattern recognition, lifelong incremental learning for intelligent systems, application of intelligent methods in ecological informatics, pattern recognition from real-world information by svm and other sophisticated techniques, dynamics of neural networks, recent advances in brain-inspired technologies for robotics, neural information processing in cooperative multi-robot systems.