Additive Manufacturing with Medical Applications


Book Description

This reference text discusses integrated approaches to improve the objectives of additive manufacturing in medical application. The text covers case studies related to product design and development, discuses biomaterials, applications of artificial intelligence and machine learning using additive manufacturing techniques. It covers important topics including 3D printing technology, materials for 3D printing in medicine, rapid prototyping in clinical applications, and use of additive manufacturing in customized bone tissue engineering scaffold. The text- Discusses additive manufacturing techniques and their utilization in medical applications. Covers important applications of additive manufacturing in the fields of medicine, education and space industry. Explores regulatory challenges associated with the emergence of additive manufacturing. Examines the use of rapid prototyping in clinical applications. The text will serve as a useful reference guide for graduate students and academic researchers in the fields of industrial engineering, manufacturing science, mechanical engineering, and aerospace engineering. This book discusses important application areas of additive manufacturing, including medicine, education, and the space industry, this reference text will be a serve as a useful text for graduate students and academic researchers in the fields of industrial engineering, manufacturing science, mechanical engineering, and aerospace engineering.




Polymer-Based Additive Manufacturing


Book Description

This book aims to give readers a basic understanding of commonly used additive manufacturing techniques as well as the tools to fully utilise the strengths of additive manufacturing through the modelling and design phase all the way through to post processing. Guidelines for 3D-printed biomedical implants are also provided. Current biomedical applications of 3D printing are discussed, including indirect applications in the rapid manufacture of prototype tooling and direct applications in the orthopaedics, cardiovascular, drug delivery, ear-nose-throat, and tissue engineering fields. Polymer-Based Additive Manufacturing: Biomedical Applications is an ideal resource for students, researchers, and those working in industry seeking to better understand the medical applications of additive manufacturing.




3D Printing in Biomedical Engineering


Book Description

This book gives a comprehensive overview of the rapidly evolving field of three-dimensional (3D) printing, and its increasing applications in the biomedical domain. 3D printing has distinct advantages like improved quality, cost-effectiveness, and higher efficiency compared to traditional manufacturing processes. Besides these advantages, current challenges and opportunities regarding choice of material, design, and efficiency are addressed in the book. Individual chapters also focus on select areas of applications such as surgical guides, tissue regeneration, artificial scaffolds and implants, and drug delivery and release. This book will be a valuable source of information for researchers and professionals interested in the expanding biomedical applications of 3D printing.




Titanium in Medical and Dental Applications


Book Description

Titanium in Medical and Dental Applications is an essential reference book for those involved in biomedical materials and advanced metals. Written by well-known experts in the field, it covers a broad array of titanium uses, including implants, instruments, devices, the manufacturing processes used to create them, their properties, corrosion resistance and various fabrication approaches. Biomedical titanium materials are a critically important part of biomaterials, especially in cases where non-metallic biomedical materials are not suited to applications, such as the case of load-bearing implants. The book also covers the use of titanium for implants in the medical and dental fields and reviews the use of titanium for medical instruments and devices. - Provides an understanding of the essential and broad applications of Titanium in both the medical and dental industries - Discusses the pathways to manufacturing titanium into critical biomedical and dental devices - Includes insights into further applications within the industry




Additive Manufacturing Applications for Metals and Composites


Book Description

Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.




Additive Manufacturing of Emerging Materials


Book Description

This book provides a solid background for understanding the immediate past, the ongoing present, and the emerging trends of additive manufacturing, with an emphasis on innovations and advances in its use for a wide spectrum of manufacturing applications. It contains contributions from leading authors in the field, who view the research and development progress of additive manufacturing techniques from the unique angle of developing high-performance composites and other complex material parts. It is a valuable reference book for scientists, engineers, and entrepreneurs who are seeking technologically novel and economically viable innovations for high-performance materials and critical applications. It can also benefit graduate students and post-graduate fellows majoring in mechanical, manufacturing, and material sciences, as well as biomedical engineering.




Additive Manufacturing


Book Description

The field of additive manufacturing has seen explosive growth in recent years due largely in part to renewed interest from the manufacturing sector. Conceptually, additive manufacturing, or industrial 3D printing, is a way to build parts without using any part-specific tooling or dies from the computer-aided design (CAD) file of the part. Today, mo




Additive Manufacturing and 3D Printing Technology


Book Description

Additive Manufacturing and 3D Printing Technology: Principles and Applications consists of the construction and working details of all modern additive manufacturing and 3D-printing technology processes and machines, while also including the fundamentals, for a well-rounded educational experience. The book is written to help the reader understand the fundamentals of the systems. This book provides a selection of additive manufacturing techniques suitable for near-term application with enough technical background to understand the domain, its applicability, and to consider variations to suit technical and organizational constraints. It highlights new innovative 3D-printing systems, presents a view of 4D printing, and promotes a vision of additive manufacturing and applications toward modern manufacturing engineering practices. With the block diagrams, self-explanatory figures, chapter exercises, and photographs of lab-developed prototypes, along with case studies, this new textbook will be useful to students studying courses in Mechanical, Production, Design, Mechatronics, and Electrical Engineering.




Advanced Structural Materials


Book Description

A snapshot of the central ideas used to control fracture properties of engineered structural metallic materials, Advanced Structural Materials: Properties, Design Optimization, and Applications illustrates the critical role that advanced structural metallic materials play in aerospace, biomedical, automotive, sporting goods, and other indust




Rapid Prototyping of Biomaterials


Book Description

Rapid Prototyping of Biomaterials: Principles and Applications provides a comprehensive review of established and emerging rapid prototyping technologies (such as bioprinting) for medical applications. Rapid prototyping, also known as layer manufacturing, additive manufacturing, solid freeform fabrication, or 3D printing, can be used to create complex structures and devices for medical applications from solid, powder, or liquid precursors. Following a useful introduction, which provides an overview of the field, the book explores rapid prototyping of nanoscale biomaterials, biosensors, artificial organs, and prosthetic limbs. Further chapters consider the use of rapid prototyping technologies for the processing of viable cells, scaffolds, and tissues. With its distinguished editor and international team of renowned contributors, Rapid Prototyping of Biomaterials is a useful technical resource for scientists and researchers in the biomaterials and tissue regeneration industry, as well as in academia. - Comprehensive review of established and emerging rapid prototyping technologies (such as bioprinting) for medical applications - Chapters explore rapid prototyping of nanoscale biomaterials, biosensors, artificial organs, and prosthetic limbs - Examines the use of rapid prototyping technologies for the processing of viable cells, scaffolds, and tissues